Review    Peer-Reviewed

A Carbon Dioxide Refinery: The Core of a Sustainable Carbon-based Circular Economy

Maria M. Ramirez-Corredores
Idaho National Laboratory, Energy and Environment Science & Technology, Idaho Falls, ID 83415, USA
Academic Editor:
Highlights of Sustainability, 2024, 3(2), 205–239.
Received: 12 December 2023    Accepted: 16 April 2024    Published: 9 May 2024
The atmospheric carbon dioxide (CO2) accumulation (2–2.5 ppmv/year) is the result of the enormous gap between its emissions (37 Gton/year) and its capture, storage, and utilization (<500 Mton/year). Climate has been dramatically affected due to the failure of natural sinks, in working effectively. To address this Gton-scale gap, numerous uses and applications are needed particularly, those consuming vast volumes of this compound and/or rendering longevous products or long lifecycle services. Thus, carbon utilization (CU) can be seen as the step to close the carbon cycle. Among CU, R&D on CO2 chemical conversion has proposed a variety of processes, with different degrees of developmental maturity. These chemical process technologies could be efficiently and effectively integrated into refineries to upgrade emitted CO2. A technology pipeline consisting of a database of these processes and the technology market status should be defined based on published scientific results and patents. Then, an innovative top-down methodology is proposed to eco-design configurations of that refinery, to warrant a sustainable carbon cycle (in terms of energy, environment, and economy) and to change the ways of producing fuels, chemicals, and materials. Additionally, the proposed methodology could be used to identify research and development gaps and needs, for orienting science and technology investments and measures. Hopefully, sustainable CO2 refineries will be implemented to close the carbon cycle of a circular C-based economy and underpin a decarbonized chemical industry.
Graphical Abstract
Figures in this Article
Copyright © 2024 Ramirez-Corredores. This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use and distribution provided that the original work is properly cited.
The author acknowledges the financial support for the elaboration of this manuscript to the Laboratory Directed Research & Development (LDRD) Program of Battelle Energy Alliance, LLC under DOE Idaho Operations Office contract No. DE-AC07-05ID14517.
Cite this Article
Ramirez-Corredores, M. M. (2024). A Carbon Dioxide Refinery: The Core of a Sustainable Carbon-based Circular Economy. Highlights of Sustainability, 3(2), 205–239.
United Nations. (2021). COP26: Decision -/CMA.3. Glasgow climate pact. (accessed 16 February 2023).
Global Carbon Project. (2022). Global carbon atlas: CO2 emissions. (accessed 10 May 2023).
International Energy Agency (IEA). (2020). Global energy review.
Chauvy, R., Meunier, N., Thomas, D., & De Weireld, G. (2019). Selecting emerging CO2 utilization products for short-to mid-term deployment. Applied Energy, 236, 662–680. https://doi.org10.1016/j.apenergy.2018.11.096
Aresta, M. (Ed.). (2010). Carbon dioxide as chemical feedstock. John Wiley & Sons.
Dibenedetto, A., Angelini, A., & Stufano, P. (2014). Use of carbon dioxide as feedstock for chemicals and fuels: homogeneous and heterogeneous catalysis. Journal of Chemical Technology & Biotechnology, 89(3), 334–353.
Müller, L. J., Kätelhön, A., Bringezu, S., McCoy, S., Suh, S., Edwards, R., et al. (2020). The carbon footprint of the carbon feedstock CO2. Energy & Environmental Science, 13(9), 2979–2992.
Artz, J., Müller, T. E., Thenert, K., Kleinekorte, J., Meys, R., Sternberg, A., et al. (2018). Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chemical Reviews, 118(2), 434–504.
Ramirez-Corredores, M. M., Goldwasser, M. R., & Falabella de Sousa Aguiar, E. (2023). Decarbonization as a Route Towards Sustainable Circularity. Springer, Cham.
Covestro. (2016). Pure facts – why the circular economy matters. (accessed 22 July 2023).
US EPA. (2023). Carbon dioxide emissions. Greenhouse Gas Reporting Program (GHGRP). (accessed 22 July 2023).
Parsons Brinckerhoff. (2011). Accelerating the uptake of CCS: Industrial use of captured carbon dioxide. Global CCS Institute.
Global Carbon Project. (2020). Global carbon atlas: CO2 emissions. (accessed 21 February 2021).
Steyn, M., Oglesby, J., Turan, G., Zapantis, A., & Gebremedhin, R. (2022). Global status of CCS. Global CCS Institute. (accessed 12 May 2023).
Centi, G., Perathoner, S., Salladini, A., & Iaquaniello, G. (2020). Economics of CO2 utilization: a critical analysis. Frontiers in Energy Research, 8, 567986.
Centi, G., & Perathoner, S. (2009). Catalysis: role and challenges for a sustainable energy. Topics in Catalysis, 52, 948–961.
De Luna, P., Hahn, C., Higgins, D., Jaffer, S. A., Jaramillo, T. F., & Sargent, E. H. (2019). What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science, 364(6438), eaav3506.
Klankermayer, J., & Leitner, W. (2016). Harnessing renewable energy with CO2 for the chemical value chain: challenges and opportunities for catalysis. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2061), 20150315.
IPCC. (2018). Global warming of 1.5 °C. Cambridge University Press. (accessed 25 January 2024).
Riahi, K., Schaeffer, R., Arango, J., Calvin, K., Guivarch, C., Hasegawa, T., et al. (2023). Mitigation Pathways Compatible with Long-term Goals. In Climate Change 2022 - Mitigation of Climate Change: Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 295–408). Cambridge University Press.
IEA. (2023). Net Zero Roadmap: A Global Pathway to Keep the 1.5 °C Goal in Reach. (accessed 25 March 2024).
Luderer, G., Vrontisi, Z., Bertram, C., Edelenbosch, O. Y., Pietzcker, R. C., Rogelj, J., et al. (2018). Residual fossil CO2 emissions in 1.5–2 °C pathways. Nature Climate Change, 8(7), 626–633.
Rissman, J., Bataille, C., Masanet, E., Aden, N., Morrow, W. R., III, Zhou, N., et al. (2020). Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Applied Energy, 266, 114848.
Ramirez-Corredores, M. M., Goldwasser, M. R., & Falabella de Sousa Aguiar, E. (2023). Sustainable circularity. In Decarbonization as a route towards sustainable circularity (pp. 103–125). Springer, Cham.
United Nations. (2015). 2030 agenda for sustainable development. Brussels, Belgium. (accessed 13 March 2021).
Borrello, M., Pascucci, S., & Cembalo, L. (2020). Three propositions to unify circular economy research: A review. Sustainability, 12(10), 4069.
Pee, A. D., Pinner, D., Roelofsen, O., & Somers, K. (2018). Decarbonization of industrial sectors: The next frontier. McKinsey.
IEA. (2017). Energy technology perspectives 2017: Catalysing energy technology transformations. (accessed 13 March 2021).
IPCC. (2014). Climate change 2014: Mitigation of climate change. (accessed 13 March 2021).
IEA. (2023). Global energy and climate model documentation. (accessed 25 March 2024).
Johansson, T. B., Patwardhan, A. P., Nakićenović, N., & Gomez-Echeverri, L. (Eds.). (2012). Global energy assessment: toward a sustainable future. Cambridge University Press.
IPCC. (2005). Carbon dioxide capture and storage. Cambridge University Press.
Ramirez-Corredores, M. M., Diaz, L. A., Gaffney, A. M., & Zarzana, C. A. (2021). Identification of opportunities for integrating chemical processes for carbon (dioxide) utilization to nuclear power plants. Renewable and Sustainable Energy Reviews, 150, 111450.
Brueske, S., Kramer, C., & Fisher, A. (2015). Chemical bandwidth study. U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy. (accessed 13 March 2021).
Liu, J., Li, B., Cao, J., Song, C., & Guo, X. (2022). Effects of indium promoter on iron-based catalysts for CO2 hydrogenation to hydrocarbons. Journal of CO2 Utilization, 65, 102243.
Wang, H., Nie, X., Liu, Y., Janik, M. J., Han, X., Deng, Y., et al. (2022). Mechanistic insight into hydrocarbon synthesis via CO2 hydrogenation on χ-Fe5C2 catalysts. ACS Applied Materials & Interfaces, 14(33), 37637–37651.
Liu, J., Song, Y., Guo, X., Song, C., & Guo, X. (2022). Recent advances in application of iron-based catalysts for COx hydrogenation to value-added hydrocarbons. Chinese Journal of Catalysis, 43(3), 731–754.
Liu, J., Zhang, G., Jiang, X., Wang, J., Song, C., & Guo, X. (2021). Insight into the role of Fe5C2 in CO2 catalytic hydrogenation to hydrocarbons. Catalysis Today, 371, 162–170.
Liu, J., Li, K., Song, Y., Song, C., & Guo, X. (2021). Selective hydrogenation of CO2 to hydrocarbons: effects of Fe3O4 particle size on reduction, carburization, and catalytic performance. Energy & Fuels, 35(13), 10703–10709.
Yuan, F., Zhang, G., Zhu, J., Ding, F., Zhang, A., Song, C., et al. (2021). Boosting light olefin selectivity in CO2 hydrogenation by adding Co to Fe catalysts within close proximity. Catalysis Today, 371, 142–149.
Su, C. Y., Tan, J. Q., & Wang, C. X. (2013). Study on CO2 Hydrogenation to Ethylene with Iron-Based Catalyst. Advanced Materials Research, 791, 112–115.
Dang, S., Gao, P., Liu, Z., Chen, X., Yang, C., Wang, H., et al. (2018). Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts. Journal of Catalysis, 364, 382–393.
Corva, M., Feng, Z., Dri, C., Salvador, F., Bertoch, P., Comelli, G., et al. (2016). Carbon dioxide reduction on Ir (111): stable hydrocarbon surface species at near-ambient pressure. Physical Chemistry Chemical Physics, 18(9), 6763–6772.
Roberts, F. S., Kuhl, K. P., & Nilsson, A. (2015). High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angewandte Chemie, 127(17), 5268–5271.
Loiudice, A., Lobaccaro, P., Kamali, E. A., Thao, T., Huang, B. H., Ager, J. W., et al. (2016). Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angewandte Chemie International Edition, 55(19), 5789–5792.
Kas, R., Kortlever, R., Yılmaz, H., Koper, M. T., & Mul, G. (2015). Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions. ChemElectroChem, 2(3), 354–358.
Dinh, C. T., Burdyny, T., Kibria, M. G., Seifitokaldani, A., Gabardo, C. M., García de Arquer, F. P., et al. (2018). CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science, 360(6390), 783–787.
García de Arquer, F. P., Dinh, C. T., Ozden, A., Wicks, J., McCallum, C., Kirmani, A. R., et al. (2020). CO2 electrolysis to multicarbon products at activities greater than 1 A cm2. Science, 367(6478), 661–666.
Tan, Y. C., Lee, K. B., Song, H., & Oh, J. (2020). Modulating local CO2 concentration as a general strategy for enhancing C–C coupling in CO2 electroreduction. Joule, 4(5), 1104–1120.
Ma, W., Xie, S., Liu, T., Fan, Q., Ye, J., Sun, F., et al. (2020). Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nature Catalysis, 3(6), 478–487.
IEA. (2018). The future of petrochemicals. Towards more sustainable plastics and fertilisers. (accessed 13 March 2021).
Aresta, M., Dibenedetto, A., & Quaranta, E. (2016). Reaction mechanisms in carbon dioxide conversion. Springer.
Aresta, M., Karimi, I., & Kawi, S. (Eds.). (2019). An economy based on carbon dioxide and water, potential of large scale carbon dioxide utilization. Springer, Cham.
Centi, G., & Perathoner, S. (Eds.). (2014). Green carbon dioxide: advances in CO2 utilization. John Wiley & Sons.
Chiang, P.-C., & Pan, S.-Y. (2017). Carbon dioxide mineralization and utilization. Springer.
Fennell, P., & Anthony, B. (2015). Calcium and chemical looping technology for power generation and carbon dioxide (CO2) capture. Woodhead Publishing.
Fink, J. K. (2013). Reactive polymers fundamentals and applications: A concise guide to industrial polymers (2nd ed.). Elsevier.
Karamé, I., Shaya, J., & Srour, H. (2018). Carbon dioxide chemistry, capture and oil recovery. InTechOpen.
Klitkou, A., Fevolden, M., & Capasso, M. (Eds.). (2019). From waste to value: Valorisation pathways for organic waste streams in circular bioeconomies. Taylor & Francis.
Michael, N., & Peter, S. (2019). Carbon dioxide utilization (Vol. 1). De Gruyter.
Muradov, N. (2014). Liberating energy from carbon: Introduction to decarbonization (Vol. 22). Springer.
National Academies of Sciences-Engineering-Medicine. (2019). Gaseous carbon waste streams utilization: Status and research needs. The National Academies Press.
National Academies of Sciences-Engineering-Medicine. (2019). Negative emissions technologies and reliable sequestration: A research agenda. The National Academies Press.
National Academies of Sciences-Engineering-Medicine. (2021). Accelerating decarbonization of the U.S. Energy system. The National Academies Press.
National Research Council. (2001). Carbon management: Implications for R&D in the chemical sciences and technology. The National Academies Press.
Olah, G. A., Goeppert, A., & Prakash, G. K. S. (2009). Beyond oil and gas: The methanol economy (2nd ed.). Wiley-VCH.
Shi, F., & Morreale, B. (2015). Novel materials for carbon dioxide mitigation technology (pp. 207–229). Elsevier.
Song, C., Gaffney, A. F., & Fujimoto, K. (Eds.). (2002). CO2 conversion and utilization (ACS Symposium Series No. 809). American Chemical Society (ACS).
Styring, P., Quadrelli, E. A., & Armstrong, K. (2015). Carbon dioxide utiiisation: Closing the carbon cycle. Elsevier.
Suib, S. L. (2013). New and future developments in catalysis. Activation of carbon dioxide. Elsevier.
Aresta, M. (2006). Carbon dioxide reduction and uses as a chemical feedstock, in Activation of small molecules: Organometallic and bioinorganic perspectives (pp. 1–41). John Wiley & Sons.
Aresta, M. (2010). Carbon dioxide: Utilization options to reduce its accumulation in the atmosphere. In Carbon dioxide as chemical feedstock (pp. 1–13). Wiley-VCH.
Aresta, M. (2019). Preface: The carbon dioxide problem. In M. Aresta, I. Karimi, & S. Kawi (Eds.), An economy based on carbon dioxide and water, potential of large scale carbon dioxide utilization. Springer.
Aresta, M., & Dibenedetto, A. (2007). Artificial carbon sinks: Utilization of carbon dioxide for the synthesis of chemicals and technological applications. In Greenhouse gas sinks (pp. 98–114). CABI Publishing.
Aresta, M., & Dibenedetto, A. (2010). Industrial utilization of carbon dioxide (CO2). In Developments and innovation in carbon dioxide (CO2) capture and storage technology (pp. 377–410). Elsevier.
Aresta, M., & Dibenedetto, A. (2013). Carbon dioxide: A valuable source of carbon for chemicals, fuels and materials. In Catalytic process development for renewable materials (pp. 355–385). Wiley-VCH.
Aresta, M., & Nocito, F. (2019). Large scale utilization of carbon dioxide: From its reaction with energy rich chemicals to (Co)-processing with water to afford energy rich products. Opportunities and barriers. In M. Aresta, I. Karimi, & S. Kawi (Eds.), An economy based on carbon dioxide and water, potential of large scale carbon dioxide utilization (pp. 2–34). Springer.
Centi, G., & Perathoner, S. (2013). Catalytic transformation of CO2 to fuels and chemicals, with reference to biorefineries. In K. S. Triantafyllidis, A. A. Lappas, & M. Stöcker (Eds.), The role of catalysis for the sustainable production of bio-fuels and bio-chemicals (pp. 529–555). Elsevier.
Hall, P. J., Wilson, I. a. G., & Rennie, A. (2015). CO2-derived fuels for energy storage. In P. Styring, E. A. Quadrelli, & K. Armstrong (Eds.), Carbon dioxide utiiisation: Closing the carbon cycle (pp. 33–44). Elsevier.
Kiss, A. A., Pragt, J. J., Vos, H. J., Bargeman, G., & De Groot, M. T. (2016). Enhanced process for methanol production by CO2 hydrogenation. In Computer aided chemical engineering (Vol. 38, pp. 985–990). Elsevier.
Langanke, J., Wolf, A., & Peters, M. (2015). Polymers from CO2—an industrial perspective. In P. Styring, E. A. Quadrelli, & K. Armstrong (Eds.), Carbon dioxide utiiisation: Closing the carbon cycle (pp. 59–71). Elsevier.
Leonzio, G. (2022). State-of-the-art overview of CO2 conversions. In Carbon dioxide utilization to sustainable energy and fuels (pp. 335–353). Springer Nature.
Mahajan, D., Song, C., & Scaroni, A. W. (2002). Catalytic reduction of CO2 into liquid fuels: Simulating reactions under geologic formation conditions. In CO2 conversion and utilization (pp. 166–180). American Chemical Society.
IPCC. (2005). Mineral carbonation and industrial uses of carbon dioxide. In Special report on carbon dioxide capture and storage (pp. 319–338). Cambridge University Press.
Nakagawa, Y., Honda, M., & Tomishige, K. (2014). Direct synthesis of organic carbonates from CO2 and alcohols using heterogeneous oxide catalysts. In Green carbon dioxide: Advances in CO2 utilization (pp. 119–148). Wiley Blackwell.
Rafiee, A., Khalilpour, K. R., & Milani, D. (2019). CO2 conversion and utilization pathways. In K. R. Khalilpour (Ed.), Polygeneration with polystorage for chemical and energy hubs (213–245). Academic Press.
Gielen, D., Podkanski, J., & Unander, F. (2006). Prospects for CO2 capture and storage. International Energy Agency.
Seemann, M., & Thunman, H. (2019). Methane synthesis. In M. Materazzi & P. U. Foscolo (Eds.), Substitute natural gas from waste (pp. 221–243). Academic Press.
Siddique, M. H., Maqbool, F., Shahzad, T., Waseem, M., Rasul, I., Hayat, S., et al. (2023). Recent advances in carbon dioxide utilization as renewable energy. In Green Sustainable Process for Chemical and Environmental Engineering and Science (pp. 197–210). Elsevier.
Song, C. (2002). CO2 conversion and utilization: An overview. In CO2 conversion and utilization (ACS Symposium Series, pp. 2–30). American Chemical Society (ACS).
Ushikoshi, K., Moria, K., Watanabe, T., Takeuchi, M., & Saito, M. (1998). A 50 kg/day class test plant for methanol synthesis from CO2 and H2. In Studies in surface science and catalysis (Vol. 114, pp. 357–362). Elsevier.
Budzianowski, W. M. (2010). Mass-recirculating systems in CO2 capture technologies: A review. Recent Patents on Engineering, 4(1), 15–43.
Gattrell, M., Gupta, N., & Co, A. (2006). A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. Journal of Electroanalytical Chemistry, 594(1), 1–19.
Ma, J., Sun, N., Zhang, X., Zhao, N., Xiao, F., Wei, W., et al. (2009). A short review of catalysis for CO2 conversion. Catalysis Today, 148(3–4), 221–231.
Mikkelsen, M., Jørgensen, M., & Krebs, F. C. (2010). The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy & Environmental Science, 3(1), 43–81.
Huijgen, W. J. J., & Comans, R. N. J. (2003). Carbon dioxide sequestration by mineral carbonation: Literature review (ECN-C--03-016 Report). Energy Research Centre of the Netherlands.
Chauvy, R., & De Weireld, G. (2020). CO2 utilization technologies in Europe: a short review. Energy Technology, 8(12), 2000627.
Dziejarski, B., Krzyżyńska, R., & Andersson, K. (2023). Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment. Fuel, 342, 127776.
Abidin, V., Bouallou, C., & Clodic, D. (2011). Valorization of CO2 emissions into ethanol by an innovative process. Chemical Engineering Transactions, 25, 1–6.
Anicic, B., Trop, P., & Goricanec, D. (2014). Comparison between two methods of methanol production from carbon dioxide. Energy, 77, 279–289.
Chein, R. Y., & Yu, C. T. (2017). Thermodynamic equilibrium analysis of water-gas shift reaction using syngases-effect of CO2 and H2S contents. Energy, 141, 1004–1018.
Daza, Y. A., & Kuhn, J. N. (2016). CO2 conversion by reverse water gas shift catalysis: Comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels. RSC Advances, 6(55), 49675–49691.
Dijkstra, J. W., Raju, G., Peppink, G., & Jansen, D. (2011). Techno-economic evaluation of membrane technology for pre-combustion decarbonisation: water-gas shift versus reforming. Energy Procedia, 4, 723–730.
Gao, J., Wu, Y., Jia, C., Zhong, Z., Gao, F., Yang, Y., et al. (2016). Controllable synthesis of α-MoC1-x and β-Mo2C nanowires for highly selective CO2 reduction to CO. Catalysis Communications, 84, 147–150.
Hu, J., Brooks, K. P., Holladay, J. D., Howe, D. T., & Simon, T. M. (2007). Catalyst development for microchannel reactors for martian in situ propellant production. Catalysis Today, 125(1–2), 103–110.
Jadhav, S. G., Vaidya, P. D., Bhanage, B. M., & Joshi, J. B. (2016). Kinetics of reverse water‐gas shift reaction over Pt/Al2O3 catalyst. The Canadian Journal of Chemical Engineering, 94(1), 101–106.
Jo, S. B., Woo, J. H., Lee, J. H., Kim, T. Y., Kang, H. I., Lee, S. C., et al. (2020). CO2 green technologies in CO2 capture and direct utilization processes: methanation, reverse water-gas shift, and dry reforming of methane. Sustainable Energy & Fuels, 4(11), 5543–5549.
Kunkes, E. L., Studt, F., Abild-Pedersen, F., Schlögl, R., & Behrens, M. (2015). Hydrogenation of CO2 to methanol and CO on Cu/ZnO/Al2O3: Is there a common intermediate or not? Journal of Catalysis, 328, 43–48.
Lindenthal, L., Popovic, J., Rameshan, R., Huber, J., Schrenk, F., Ruh, T., et al. (2021). Novel perovskite catalysts for CO2 utilization-Exsolution enhanced reverse water-gas shift activity. Applied Catalysis B: Environmental, 292, 120183.
Rezaei, E., & Dzuryk, S. (2019). Techno-economic comparison of reverse water gas shift reaction to steam and dry methane reforming reactions for syngas production. Chemical Engineering Research and Design, 144, 354–369.
Rodrigues, M. T., Zonetti, P. C., Alves, O. C., Sousa-Aguiar, E. F., Borges, L. E., & Appel, L. G. (2017). RWGS reaction employing Ni/Mg(Al,Ni)O − The role of the O vacancies. Applied Catalysis A: General, 543, 98–103.
Saeidi, S., Najari, S., Fazlollahi, F., Nikoo, M. K., Sefidkon, F., Klemeš, J. J., et al. (2017). Mechanisms and kinetics of CO2 hydrogenation to value-added products: A detailed review on current status and future trends. Renewable and Sustainable Energy Reviews, 80, 1292–1311.
Sun, H., Wang, J., Zhao, J., Shen, B., Shi, J., Huang, J., et al. (2019). Dual functional catalytic materials of Ni over Ce-modified CaO sorbents for integrated CO2 capture and conversion. Applied Catalysis B: Environmental, 244, 63–75.
Wang, J., Liu, C. Y., Senftle, T. P., Zhu, J., Zhang, G., Guo, X., et al. (2019). Variation in the In2O3 crystal phase alters catalytic performance toward the reverse water gas shift reaction. ACS Catalysis, 10(5), 3264–3273.
Yang, L., Pastor-Pérez, L., Gu, S., Sepúlveda-Escribano, A., & Reina, T. R. (2018). Highly efficient Ni/CeO2-Al2O3 catalysts for CO2 upgrading via reverse water-gas shift: Effect of selected transition metal promoters. Applied Catalysis B: Environmental, 232, 464–471.
Zhu, J., Zhang, G., Li, W., Zhang, X., Ding, F., Song, C., et al. (2020). Deconvolution of the particle size effect on CO2 hydrogenation over iron-based catalysts. ACS Catalysis, 10(13), 7424–7433.
Kurz, G., & Von Linde, J. (1994). Process for obtaining carbon monoxide (Patent No. DE3617280A1). German Patent and Trade Mark Office.
Xi, W., Yang, P., Jiang, M., Wang, X., Zhou, H., Duan, J., et al. (2023). Electrochemical CO2 reduction coupled with alternative oxidation reactions: electrocatalysts, electrolytes, and electrolyzers. Applied Catalysis B: Environmental, 341, 123291.
Van Daele, S., Hintjens, L., Hoekx, S., Bohlen, B., Neukermans, S., Daems, N., et al. (2024). How flue gas impurities affect the electrochemical reduction of CO2 to CO and formate. Applied Catalysis B: Environmental, 341, 123345.
Liu, Y., & Tang, Y. (2024). Low Overpotential Electroreduction of CO2 on Porous SnO2/ZnO Catalysts. Journal of Electrochemical Energy Conversion and Storage, 21, 021001.
Liu, Z., Qian, J., Zhang, G., Zhang, B., & He, Y. (2024). Electrochemical CO2-to-CO conversion: A comprehensive review of recent developments and emerging trends. Separation and Purification Technology, 330, 125177.
Liu, Y., Lyu, S., Wen, F., Nie, W., & Wang, S. (2023). Polymer-encapsulated metal complex catalysts: An emerging and efficient platform for electrochemical CO2 reduction. Journal of Materials Science & Technology, 172, 33–50.
Li, S., Li, S., Wu, Z., Qin, L., Liu, J., Zhou, W., et al. (2024). Rational design of highly efficient carbon-based materials for electrochemical CO2 reduction reaction. Fuel, 357, 129760.
Zhang, D., Zhou, J., Luo, Y., Wang, Y., Zhang, X., Chen, X., et al. (2023). Robust cobalt-free perovskite type electrospun nanofiber cathode for efficient electrochemical carbon dioxide reduction reaction. Journal of Power Sources, 587, 233705.
Yusufoğlu, M., Tafazoli, S., Balkan, T., & Kaya, S. (2023). Enhancement in CO Selectivity by Modification of ZnO with Cu x O for Electrochemical Reduction of CO2. Energy Technology, 11(11), 2300542.
Yamaguchi, N., Nakazato, R., Matsumoto, K., Kakesu, M., Rosero-Navarro, N. C., Miura, A., et al. (2023). Electrocatalytic property of Zn-Al layered double hydroxides for CO2 electrochemical reduction. Journal of Asian Ceramic Societies, 11(3), 406–411.
Ampelli, C., Tavella, F., Giusi, D., Ronsisvalle, A. M., Perathoner, S., & Centi, G. (2023). Electrode and cell design for CO2 reduction: A viewpoint. Catalysis Today, 421, 114217.
Proietto, F., Li, S., Loria, A., Hu, X. M., Galia, A., Ceccato, M., et al. (2022). High-pressure synthesis of CO and syngas from CO2 reduction using Ni−N-doped porous carbon electrocatalyst. Chemical Engineering Journal, 429, 132251.
Li, Y., Adli, N. M., Shan, W., Wang, M., Zachman, M. J., Hwang, S., et al. (2022). Atomically dispersed single Ni site catalysts for high-efficiency CO2 electroreduction at industrial-level current densities. Energy & Environmental Science, 15(5), 2108–2119.
Li, L., Yang, J., Li, L., Huang, Y., & Zhao, J. (2022). Electrolytic reduction of CO2 in KHCO3 and alkanolamine solutions with layered double hydroxides intercalated with gold or copper. Electrochimica Acta, 402, 139523.
Kim, J. Y., & Youn, D. H. (2022). Electrochemical Reduction of Gaseous CO2 at Low-Intermediate Temperatures Using a Solid Acid Membrane Cell. Catalysts, 12(12), 1504.
Xie, L., Liang, J., Priest, C., Wang, T., Ding, D., Wu, G., et al. (2021). Engineering the atomic arrangement of bimetallic catalysts for electrochemical CO2 reduction. Chemical Communications, 57(15), 1839–1854.
Wuttig, A., Ryu, J., & Surendranath, Y. (2021). Electrolyte competition controls surface binding of CO intermediates to CO2 reduction catalysts. Journal of Physical Chemistry C, 125(31), 17042–17050.
Ahmad, N., Wang, X., Sun, P., Chen, Y., Rehman, F., Xu, J., et al. (2021). Electrochemical CO2 reduction to CO facilitated by MDEA-based deep eutectic solvent in aqueous solution. Renewable Energy, 177, 23–33.
Abdinejad, M., da Silva, I. S., & Kraatz, H. B. (2021). Electrografting amines onto silver nanoparticle-modified electrodes for electroreduction of CO2 at low overpotential. Journal of Materials Chemistry A, 9(15), 9791–9797.
Zhang, X., Guo, S. X., Gandionco, K. A., Bond, A. M., & Zhang, J. (2020). Electrocatalytic carbon dioxide reduction: From fundamental principles to catalyst design. Materials Today Advances, 7, 100074.
Sun, L., Reddu, V., Fisher, A. C., & Wang, X. (2020). Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts. Energy & Environmental Science, 13(2), 374–403.
Nwabara, U. O., De Heer, M. P., Cofell, E. R., Verma, S., Negro, E., & Kenis, P. J. (2020). Towards accelerated durability testing protocols for CO2 electrolysis. Journal of Materials Chemistry A, 8(43), 22557–22571.
Liang, S., Altaf, N., Huang, L., Gao, Y., & Wang, Q. (2020). Electrolytic cell design for electrochemical CO2 reduction. Journal of CO2 Utilization, 35, 90–105.
Küngas, R. (2020). Review—electrochemical CO2 reduction for CO production: Comparison of low- and high-temperature electrolysis technologies. Journal of The Electrochemical Society, 167(4), 044508.
Yin, Z., Peng, H., Wei, X., Zhou, H., Gong, J., Huai, M., et al. (2019). An alkaline polymer electrolyte CO2 electrolyzer operated with pure water. Energy & Environmental Science, 12(8), 2455–2462.
Tian, Y., Zhang, L., Liu, Y., Jia, L., Yang, J., Chi, B., et al. (2019). A self-recovering robust electrode for highly efficient CO2 electrolysis in symmetrical solid oxide electrolysis cells. Journal of Materials Chemistry A, 7(11), 6395–6400.
Mun, Y., Lee, S., Cho, A., Kim, S., Han, J. W., & Lee, J. (2019). Cu-Pd alloy nanoparticles as highly selective catalysts for efficient electrochemical reduction of CO2 to CO. Applied Catalysis B: Environmental, 246, 82–88.
Lu, P., Yang, Y., Yao, J., Wang, M., Dipazir, S., Yuan, M., et al. (2019). Facile synthesis of single-nickel-atomic dispersed N-doped carbon framework for efficient electrochemical CO2 reduction. Applied Catalysis B: Environmental, 241, 113–119.
Higgins, D., Hahn, C., Xiang, C., Jaramillo, T. F., & Weber, A. Z. (2018). Gas-diffusion electrodes for carbon dioxide reduction: a new paradigm. ACS Energy Letters, 4(1), 317–324.
Burdyny, T., & Smith, W. A. (2019). CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy & Environmental Science, 12(5), 1442–1453.
Weng, L.-C., Bell, A. T., & Weber, A. Z. (2018). Modeling gas-diffusion electrodes for CO2 reduction. Physical Chemistry Chemical Physics, 20(25), 16973–16984.
Salvatore, D. A., Weekes, D. M., He, J., Dettelbach, K. E., Li, Y. C., Mallouk, T. E., et al. (2017). Electrolysis of Gaseous CO2 to CO in a Flow Cell with a Bipolar Membrane. ACS Energy Letters, 3(1), 149–154.
Hu, X. M., Hval, H. H., Bjerglund, E. T., Dalgaard, K. J., Madsen, M. R., Pohl, M. M., et al. (2018). Selective CO2 reduction to CO in water using earth-abundant metal and nitrogen-doped carbon electrocatalysts. ACS Catalysis, 8(7), 6255–6264.
Dinh, C. T., García de Arquer, F. P., Sinton, D., & Sargent, E. H. (2018). High rate, selective, and stable electroreduction of CO2 to CO in basic and neutral media. ACS Energy Letters, 3(11), 2835–2840.
Rosenthal, J., Dimeglio, J. L., & Medina-Ramos, J. (2017). System and process for electrochemical conversion of carbon dioxide to carbon monoxide (Patent No. US9624589). U.S. Patent and Trade Mark Office.
Rosenthal, J., Medina-Ramos, J., Dimeglio, J. L., & Keane, T. P. (2017). System and process for electrochemical conversion of carbon dioxide to carbon monoxide (Patent No. US2017130347). U.S. Patent and Trade Mark Office.
Krishnamurthy, K., Gärtner, L.-E., Rupieper, A., & Bostick, D. (2018). Process and apparatus for manufacturing carbon monoxide (Patent No. WO2018228723). WIPO.
Peschel, A., & Hentschel, B. (2018). Method and system for producing a gas product containing carbon monoxide (Patent No. WO2018228718). WIPO.
Kushi, T., & Doko, T. (2019). Carbon monoxide production system (Patent No. JP2019035102). Japan Patent Office.
Stark, K., Baldauf, M., & Hanebuth, M. (2019). Method and device for the electrochemical utilization of carbon dioxide (Patent No. US2019062931). U.S. Patent and Trade Mark Office.
Hartmann, D., & Krause, R. (2020). Electrolysis method for carbon dioxide reduction (Patent No. WO2020143970). WIPO.
Peschel, A., & Hentschel, B. (2020). Method and system for producing a gas product containing carbon monoxide (Patent No. US2020165732). U.S. Patent and Trade Mark Office.
Cao, M., Wu, D., Long, C., & Sun, S. (2021). Preparation of catalyst for electrocatalytic carbon dioxide reduction (Patent No. CN214168159). China National Intellectual Property Administration.
Kim, W. B., & Park, S. M. (2021). Cathode composition for carbon dioxide decomposition solid oxide electrolysis cell for carbon dioxide decomposition and manufacturing method for the cathode composition (Patent No. KR20210033744). Korea Intellectual Property Office.
Lu, L., Guan, W., Wang, J., Yang, J., & Liu, W. (2021). Method for efficient electrocatalytically reducing carbon dioxide (Patent No. CN113046769). China National Intellectual Property Administration.
Shi, J., Shen, F., Song, W., Hua, Y., Wu, S., Zhang, J., et al. (2022). Bipolar membrane electrolysis method for preparing carbon monoxide by electrolyzing carbon dioxide in organic electrolyte and simultaneously producing chlorine and metal hydroxide as byproducts (Patent No. CN113913851). China National Intellectual Property Administration.
Hunt, J., Ferrari, A., Lita, A., Crosswhite, M., Ashley, B., & Stiegman, A. E. (2013). Microwave-specific enhancement of the carbon–carbon dioxide (Boudouard) reaction. The Journal of Physical Chemistry C, 117(51), 26871–26880.
Kogler, M., Köck, E. M., Klötzer, B., Schachinger, T., Wallisch, W., Henn, R., et al. (2016). High-temperature carbon deposition on oxide surfaces by CO disproportionation. The Journal of Physical Chemistry C, 120(3), 1795–1807.
Rout, K. R., Gil, M. V., & Chen, D. (2019). Highly selective CO removal by sorption enhanced Boudouard reaction for hydrogen production. Catalysis Science and Technology, 9(15), 4100–4107.
Zuber, M., Patriarca, M., Ackermann, S., Furler, P., Conceição, R., Gonzalez-Aguilar, J., et al. (2023). Methane dry reforming via a ceria-based redox cycle in a concentrating solar tower. Sustainable Energy & Fuels, 7(8), 1804–1817.
Zhu, L., Lv, Z., Huang, X., Lu, S., Ran, J., & Qin, C. (2023). Development of dual-functional materials for integrated CO2 capture and utilization by dry reforming of CH4. Fuel Processing Technology, 248, 107838.
Yadav, P. K., Patrikar, K., Mondal, A., & Sharma, S. (2023). Ni/Co in and on CeO2: a comparative study on the dry reforming reaction. Sustainable Energy & Fuels, 7(16), 3853–3870.
Wang, C., Sourav, S., Yu, K., Kwak, Y., Zheng, W., & Vlachos, D. G. (2023). Green Syngas Production by Microwave-Assisted Dry Reforming of Methane on Doped Ceria Catalysts. ACS Sustainable Chemistry & Engineering, 11(36), 13353–13362.
Shi, Y., Wang, L., Wu, M., & Wang, F. (2023). Order-of-magnitude increase in rate of methane dry reforming over Ni/CeO2-SiC catalysts by microwave catalysis. Applied Catalysis B: Environmental, 337, 122927.
Ramirez-Corredores, M. M., Rollins, H. W., Morco, R. P., Zarzana, C. A., & Diaz, L. A. (2023). Radiation-induced dry reforming: A negative emission process. Journal of Cleaner Production, 429, 139539.
Ou, Z., Ran, J., Qiu, H., Huang, X., & Qin, C. (2023). Uncovering the effect of surface basicity on the carbon deposition of Ni/CeO2 catalyst modified by oxides in DRM. Fuel, 335, 126994.
Kumari, R., & Sengupta, S. (2023). MgAl2O4 with CaO in supported Ni and Ni–Co catalysts–impact on CO2 reforming of CH4. Indian Chemical Engineer, 65(6), 574–586.
Dong, J., Peng, Y., Li, J., Liu, Z. W., & Hu, R. (2023). CO2 capture and conversion to syngas via dry reforming of C3H8 over a Pt/ZrO2–CaO catalyst. Catalysis Science & Technology, 13(6), 1650–1665.
Cherbański, R., Kotkowski, T., & Molga, E. (2023). Thermogravimetric analysis of coking during dry reforming of methane. International Journal of Hydrogen Energy, 48(20), 7346–7360.
Ahasan, M. R., Hossain, M. M., Barlow, Z., Ding, X., & Wang, R. (2023). Low-Temperature Plasma-Assisted Catalytic Dry Reforming of Methane over CeO2 Nanorod-Supported NiO Catalysts in a Dielectric Barrier Discharge Reactor. ACS Applied Materials & Interfaces, 15(38), 44984–44995.
Zhang, X., Deng, J., Lan, T., Shen, Y., Qu, W., Zhong, Q., et al. (2022). Coking-and sintering-resistant Ni nanocatalysts confined by active BN edges for methane dry reforming. ACS Applied Materials & Interfaces, 14(22), 25439–25447.
Yoon, Y., You, H. M., Kim, H. J., Curnan, M. T., Kim, K., & Han, J. W. (2022). Computational catalyst design for dry reforming of methane: a review. Energy & Fuels, 36(17), 9844–9865.
Tsiotsias, A. I., Charisiou, N. D., Sebastian, V., Gaber, S., Hinder, S. J., Baker, M. A., et al. (2022). A comparative study of Ni catalysts supported on Al2O3, MgO–CaO–Al2O3 and La2O3–Al2O3 for the dry reforming of ethane. International Journal of Hydrogen Energy, 47(8), 5337–5353.
Sokefun, Y. O., Trottier, J., Yung, M. M., Joseph, B., & Kuhn, J. N. (2022). Low temperature dry reforming of methane using Ru-Ni-Mg/ceria-zirconia catalysts: Effect of Ru loading and reduction temperature. Applied Catalysis A: General, 645, 118842.
Huang, L., Li, D., Tian, D., Jiang, L., Li, Z., Wang, H., et al. (2022). Optimization of Ni-based catalysts for dry reforming of methane via alloy design: a review. Energy & Fuels, 36(10), 5102–5151.
Wang, Y. B., He, L., Zhou, B. C., Tang, F., Fan, J., Wang, D. Q., et al. (2021). Hydroxyapatite nanorods rich in [Ca–O–P] sites stabilized Ni species for methane dry reforming. Industrial & Engineering Chemistry Research, 60(42), 15064–15073.
Taherian, Z., Gharahshiran, V. S., Fazlikhani, F., & Yousefpour, M. (2021). Catalytic performance of Samarium-modified Ni catalysts over Al2O3–CaO support for dry reforming of methane. International Journal of Hydrogen Energy, 46(10), 7254–7262.
Silva, C. G., Passos, F. B., & Teixeira da Silva, V. (2021). Effect of carburization conditions on the activity of molybdenum carbide-supported catalysts promoted by nickel for the dry reforming of methane. Energy & Fuels, 35(21), 17833–17847.
Meng, J., Pan, W., Gu, T., Bu, C., Zhang, J., Wang, X., et al. (2021). One-pot synthesis of a highly active and stable Ni-embedded hydroxyapatite catalyst for syngas production via dry reforming of methane. Energy & Fuels, 35(23), 19568–19580.
Li, R., Xu, W., Deng, J., & Zhou, J. (2021). Coke-resistant Ni–Co/ZrO2–CaO-based microwave catalyst for highly effective dry reforming of methane by microwave catalysis. Industrial & Engineering Chemistry Research, 60(48), 17458–17468.
Jensen, C., & Duyar, M. S. (2021). Thermodynamic analysis of dry reforming of methane for valorization of landfill gas and natural gas. Energy Technology, 9(7), 2100106.
Dang, C., Luo, J., Yang, W., Li, H., & Cai, W. (2021). Low-temperature catalytic dry reforming of methane over Pd promoted Ni–CaO–Ca12Al14O33 multifunctional catalyst. Industrial & Engineering Chemistry Research, 60(50), 18361–18372.
Wittich, K., Krämer, M., Bottke, N., & Schunk, S. A. (2020). Catalytic dry reforming of methane: insights from model systems. ChemCatChem, 12(8), 2130–2147.
Wang, L., Zhang, J., Huang, J., Cui, Q., Zhu, Y., & Chen, H. (2019). Self-confinement created for a uniform Ir–Ni/SiO2 catalyst with enhanced performances on CO2 reforming of methane. Energy & Fuels, 34(1), 111–117.
Sun, H., Zhang, Q., Wen, J., Tang, T., Wang, H., Liu, M., et al. (2020). Insight into the role of CaO in coke-resistant over Ni-HMS catalysts for CO2 reforming of methane. Applied Surface Science, 521, 146395.
Praserthdam, S., Somdee, S., Rittiruam, M., & Balbuena, P. B. (2020). Computational study of the evolution of Ni-based catalysts during the dry reforming of methane. Energy & Fuels, 34(4), 4855–4864.
Mozammel, T., Dumbre, D., Hubesch, R., Yadav, G. D., Selvakannan, P. R., & Bhargava, S. K. (2020). Carbon dioxide reforming of methane over mesoporous alumina supported Ni (Co), Ni (Rh) bimetallic, and Ni (CoRh) trimetallic catalysts: role of nanoalloying in improving the stability and nature of coking. Energy & Fuels, 34(12), 16433–16444.
Gao, X., Ashok, J., & Kawi, S. (2020). Smart designs of anti-coking and anti-sintering Ni-based catalysts for dry reforming of methane: a recent review. Reactions, 1(2), 162–194.
Fertout, R. I., Ghelamallah, M., Kacimi, S., López, P. N., & Corberán, V. C. (2020). Nickel Supported on Alkaline Earth Metal–Doped γ-Al2O3–La2O3 as Catalysts for Dry Reforming of Methane. Russian Journal of Applied Chemistry, 93, 289–298.
Chen, Q., Wang, D., Gu, Y., Yang, S., Tang, Z., Sun, Y., et al. (2020). Techno-economic evaluation of CO2-rich natural gas dry reforming for linear alpha olefins production. Energy Conversion and Management, 205, 112348.
Al Abdulghani, A. J., Park, J. H., Kozlov, S. M., Kang, D. C., AlSabban, B., Pedireddy, S., et al. (2020). Methane dry reforming on supported cobalt nanoparticles promoted by boron. Journal of Catalysis, 392, 126–134.
Ugwu, A., Zaabout, A., & Amini, S. (2019). An advancement in CO2 utilization through novel gas switching dry reforming. International Journal of Greenhouse Gas Control, 90, 102791.
Szima, S., & Cormos, C. C. (2019). Techno–economic assessment of flexible decarbonized hydrogen and power co-production based on natural gas dry reforming. International Journal of Hydrogen Energy, 44(60), 31712–31723.
Sokefun, Y. O., Joseph, B., & Kuhn, J. N. (2019). Impact of Ni and Mg loadings on dry reforming performance of Pt/ceria-zirconia catalysts. Industrial & Engineering Chemistry Research, 58(22), 9322–9330.
Rezaei, R., Moradi, G., & Sharifnia, S. (2019). Dry reforming of methane over Ni-Cu/Al2O3 catalyst coatings in a microchannel reactor: modeling and optimization using design of experiments. Energy & Fuels, 33(7), 6689–6706.
Park, J. H., Heo, I., & Chang, T. S. (2019). Dry reforming of methane over Ni-substituted CaZrNiOx catalyst prepared by the homogeneous deposition method. Catalysis Communications, 120, 1–5.
Khoja, A. H., Tahir, M., & Saidina Amin, N. A. (2019). Evaluating the performance of a Ni catalyst supported on La2O3-MgAl2O4 for dry reforming of methane in a packed bed dielectric barrier discharge plasma reactor. Energy & Fuels, 33(11), 11630–11647.
Hernández, B., & Martín, M. (2019). Optimization of Biogas to Syngas via Combined Super-Dry and Tri-Reforming. Analysis of Fischer-Tropsch Fuels Production. In Computer Aided Chemical Engineering (Vol. 46, pp. 193–198). Elsevier.
Chein, R., & Yang, Z. W. (2019). H2S effect on dry reforming of biogas for syngas production. International Journal of Energy Research, 43(8), 3330–3345.
Barelli, L., Bidini, G., Di Michele, A., Gammaitoni, L., Mattarelli, M., Mondi, F., et al. (2019). Development and validation of a Ni-based catalyst for carbon dioxide dry reforming of methane process coupled to solid oxide fuel cells. International Journal of Hydrogen Energy, 44(31), 16582–16593.
Wang, Y., Yao, L., Wang, S., Mao, D., & Hu, C. (2018). Low-temperature catalytic CO2 dry reforming of methane on Ni-based catalysts: A review. Fuel Processing Technology, 169, 199–206.
Wang, H., Duan, X., Liu, X., Ye, G., Gu, X., Zhu, K., et al. (2018). Influence of tubular reactor structure and operating conditions on dry reforming of methane. Chemical Engineering Research and Design, 139, 39–51.
Lachén, J., Durán, P., Menéndez, M., Peña, J. A., & Herguido, J. (2018). Biogas to high purity hydrogen by methane dry reforming in TZFBR+MB and exhaustion by Steam-Iron Process. Techno–economic assessment. International Journal of Hydrogen Energy, 43(26), 11663–11675.
Guharoy, U., Le Saché, E., Cai, Q., Reina, T. R., & Gu, S. (2018). Understanding the role of Ni-Sn interaction to design highly effective CO2 conversion catalysts for dry reforming of methane. Journal of CO2 Utilization, 27, 1–10.
Dama, S., Ghodke, S. R., Bobade, R., Gurav, H. R., & Chilukuri, S. (2018). Active and durable alkaline earth metal substituted perovskite catalysts for dry reforming of methane. Applied Catalysis B: Environmental, 224, 146–158.
Aramouni, N. A. K., Touma, J. G., Tarboush, B. A., Zeaiter, J., & Ahmad, M. N. (2018). Catalyst design for dry reforming of methane: Analysis review. Renewable and Sustainable Energy Reviews, 82, 2570–2585.
Zubenko, D., Singh, S., & Rosen, B. A. (2017). Exsolution of Re-alloy catalysts with enhanced stability for methane dry reforming. Applied Catalysis B: Environmental, 209, 711–719.
Wang, C., Zhang, Y., Wang, Y., & Zhao, Y. (2017). Comparative studies of non‐noble metal modified mesoporous M‐Ni‐CaO‐ZrO2 (M = Fe, Co, Cu) catalysts for simulated biogas dry reforming. Chinese Journal of Chemistry, 35(1), 113–120.
Lou, Y., Steib, M., Zhang, Q., Tiefenbacher, K., Horváth, A., Jentys, A., et al. (2017). Design of stable Ni/ZrO2 catalysts for dry reforming of methane. Journal of Catalysis, 356, 147–156.
Elsayed, N. H., Elwell, A., Joseph, B., & Kuhn, J. N. (2017). Effect of silicon poisoning on catalytic dry reforming of simulated biogas. Applied Catalysis A: General, 538, 157–164.
Dębek, R., Motak, M., Galvez, M. E., Grzybek, T., & Da Costa, P. (2017). Influence of Ce/Zr molar ratio on catalytic performance of hydrotalcite-derived catalysts at low temperature CO2 methane reforming. International Journal of Hydrogen Energy, 42(37), 23556–23567.
Amin, R., Liu, B., Ullah, S., & Biao, H. Z. (2017). Study of coking and catalyst stability over CaO promoted Ni-based MCF synthesized by different methods for CH4/CO2 reforming reaction. International Journal of Hydrogen Energy, 42(34), 21607–21616.
Wolfbeisser, A., Sophiphun, O., Bernardi, J., Wittayakun, J., Föttinger, K., & Rupprechter, G. (2016). Methane dry reforming over ceria-zirconia supported Ni catalysts. Catalysis Today, 277, 234–245.
Kurz, G. (1997). Process and plant for producing synthesis gas by cracking of hydrocarbons (Patent No. DE3528858). German Patent and Trade Mark Office.
Kurz, G., & Von Linde, J. (1991). Cooling carbon monoxide rich synthesis gas from Boudouard reaction - uses a mixing chamber or venturi to put together hot gas with cooled gas recycled through a heat exchanger (Patent No. DE3941591). German Patent and Trade Mark Office.
Buelens, L. C., Poelman, H., Marin, G. B., & Galvita, V. V. (2019). 110th anniversary: carbon dioxide and chemical looping: current research trends. Industrial & Engineering Chemistry Research, 58(36), 16235–16257.
Güleç, F., Meredith, W., & Snape, C. E. (2020). Progress in the CO2 capture technologies for fluid catalytic cracking (FCC) units—a review. Frontiers in Energy Research, 8, 62.
Fan, L. S., & Li, F. (2010). Chemical looping technology and its fossil energy conversion applications. Industrial & Engineering Chemistry Research, 49(21), 10200–10211.
Fang, H., Haibin, L., & Zengli, Z. (2009). Advancements in development of chemical-looping combustion: a review. International Journal of Chemical Engineering, 2009, 710515.
Adánez, J., Abad, A., Mendiara, T., Gayán, P., De Diego, L. F., & García-Labiano, F. (2018). Chemical looping combustion of solid fuels. Progress in Energy and Combustion Science, 65, 6–66.
Argyris, P. A., de Leeuwe, C., Abbas, S. Z., & Spallina, V. (2022). Mono-dimensional and two-dimensional models for chemical looping reforming with packed bed reactors and validation under real process conditions. Sustainable Energy & Fuels, 6(11), 2755–2770.
Bhavsar, S., Najera, M., & Veser, G. (2012). Chemical looping dry reforming as novel, intensified process for CO2 activation. Chemical Engineering & Technology, 35(7), 1281–1290.
Brandvoll, O., & Bolland, O. (2004). Inherent CO2 capture using chemical looping combustion in a natural gas fired power cycle. Journal of Engineering for Gas Turbines and Power, 126(2), 316–321.
Brower, J. C., Hare, B. J., Bhethanabotla, V. R., & Kuhn, J. N. (2020). Mesoporous silica supported perovskite oxides for low temperature thermochemical CO2 conversion. ChemCatChem, 12(24), 631–6328.
Chen, X., Wang, L., Lin, Y., Zeng, T., Huang, Z., Zhang, Y., et al. (2023). Migration of lattice oxygen during chemical looping dry reforming of methane with Ca2Fe2O5/Zr0.5Ce0.5O2 oxygen carrier. Fuel Processing Technology, 244, 107706.
Daza, Y. A., Kent, R. A., Yung, M. M., & Kuhn, J. N. (2014). Carbon dioxide conversion by reverse water–gas shift chemical looping on perovskite-type oxides. Industrial & Engineering Chemistry Research, 53(14), 5828–5837.
Daza, Y. A., Maiti, D., Kent, R. A., Bhethanabotla, V. R., & Kuhn, J. N. (2015). Isothermal reverse water gas shift chemical looping on La0.75Sr0.25Co(1−Y)FeYO3 perovskite-type oxides. Catalysis Today, 258, 691–698.
Han, R., Xing, S., Wang, Y., Wei, L., Li, Z., Yang, C., et al. (2023). Two birds with one stone: MgO promoted Ni-CaO as stable and coke-resistant bifunctional materials for integrated CO2 capture and conversion. Separation and Purification Technology, 307, 122808.
Hare, B. J., Maiti, D., Ramani, S., Ramos, A. E., Bhethanabotla, V. R., & Kuhn, J. N. (2019). Thermochemical conversion of carbon dioxide by reverse water-gas shift chemical looping using supported perovskite oxides. Catalysis Today, 323, 225–232.
Hu, J., Hongmanorom, P., Chen, J., Wei, W., Chirawatkul, P., Galvita, V. V., et al. (2023). Tandem distributing Ni into CaO framework for isothermal integration of CO2 capture and conversion. Chemical Engineering Journal, 452, 139460.
Hu, J., Hongmanorom, P., Chirawatkul, P., & Kawi, S. (2021). Efficient integration of CO2 capture and conversion over a Ni supported CeO2-modified CaO microsphere at moderate temperature. Chemical Engineering Journal, 426, 130864.
Hu, J., Hongmanorom, P., Galvita, V. V., Li, Z., & Kawi, S. (2021). Bifunctional Ni-Ca based material for integrated CO2 capture and conversion via calcium-looping dry reforming. Applied Catalysis B: Environmental, 284, 119734.
Law, Z. X., & Tsai, D. H. (2023). Efficient calcium looping-integrated methane dry reforming by dual functional aerosol Ca–Ni–Ce nanoparticle clusters. ACS Sustainable Chemistry & Engineering, 11(6), 2574–2585.
Miyazaki, S., Li, Z., Li, L., Toyao, T., Nakasaka, Y., Nakajima, Y., et al. (2023). Chemical Looping Dry Reforming of Methane over Ni-Modified WO3/ZrO2: Cooperative Work of Dispersed Tungstate Species and Ni over the ZrO2 Surface. Energy & Fuels, 37(11), 7945–7957.
Najera, M., Solunke, R., Gardner, T., & Veser, G. (2011). Carbon capture and utilization via chemical looping dry reforming. Chemical Engineering Research and Design, 89(9), 1533–1543.
Osman, M., Khan, M. N., Zaabout, A., Cloete, S., & Amini, S. (2021). Review of pressurized chemical looping processes for power generation and chemical production with integrated CO2 capture. Fuel Processing Technology, 214, 106684.
Ramos, A. E., Maiti, D., Daza, Y. A., Kuhn, J. N., & Bhethanabotla, V. R. (2019). Co, Fe, and Mn in La-perovskite oxides for low temperature thermochemical CO2 conversion. Catalysis Today, 338, 52–59.
Salaudeen, S. A., Tasnim, S. H., Heidari, M., Acharya, B., & Dutta, A. (2018). Eggshell as a potential CO2 sorbent in the calcium looping gasification of biomass. Waste Management, 80, 274–284.
Shahrestani, M. M., & Rahimi, A. (2014). Evolution, fields of research, and future of chemical-looping combustion (CLC) process: a review. Environmental Engineering Research, 19(4), 299–308.
Shao, B., Wang, Z. Q., Gong, X. Q., Liu, H., Qian, F., Hu, P., et al. (2023). Synergistic promotions between CO2 capture and in-situ conversion on Ni-CaO composite catalyst. Nature Communications, 14(1), 996.
Shi, H., Bhethanabotla, V. R., & Kuhn, J. N. (2021). Role of Ba in low temperature thermochemical conversion of carbon dioxide with LaFeO3 perovskite oxides. Journal of CO2 Utilization, 51, 101638.
Shi, H., Bhethanabotla, V. R., & Kuhn, J. N. (2023). Pelletized SiO2-supported La0.5Ba0.5FeO3 for conversion of CO2 to CO by a reverse water-gas shift chemical looping process. Journal of Industrial and Engineering Chemistry, 118, 44–52.
Tregambi, C., Di Lauro, F., Montagnaro, F., Salatino, P., & Solimene, R. (2019). 110th anniversary: calcium looping coupled with concentrated solar power for carbon capture and thermochemical energy storage. Industrial & Engineering Chemistry Research, 58(47), 21262–21272.
Ugwu, A., Osman, M., Zaabout, A., & Amini, S. (2022). Carbon Capture Utilization and Storage in Methanol Production Using a Dry Reforming-Based Chemical Looping Technology. Energy & Fuels, 36(17), 9719–9735.
Wei, G. Q., Feng, J., Hou, Y. L., Li, F. Z., Li, W. Y., Huang, Z., et al. (2021). Ca-enhanced hematite oxygen carriers for chemical looping reforming of biomass pyrolyzed gas coupled with CO2 splitting. Fuel, 285, 119125.
Wei, L., Han, R., Xing, S., Wang, Y., Li, Z., & Liu, Q. (2023). Calcium-looping coupling methane partial oxidation and dry reforming process for integrated CO2 capture and conversion: Regulable H2/CO molar ratio and excellent coke deposition-resistant. Chemical Engineering Journal, 474, 145833.
Law, Z. X., Pan, Y. T., & Tsai, D. H. (2022). Calcium looping of CO2 capture coupled to syngas production using Ni-CaO-based dual functional material. Fuel, 328, 125202.
Zhu, L., Jiang, P., & Fan, J. (2015). Comparison of carbon capture IGCC with chemical-looping combustion and with calcium-looping process driven by coal for power generation. Chemical Engineering Research and Design, 104, 110–124.
Galvita, V. V., Poelman, H., Bliznuk, V., Detavernier, C., & Marin, G. B. (2013). CeO2-modified Fe2O3 for CO2 utilization via chemical looping. Industrial & Engineering Chemistry Research, 52(25), 8416–8426.
Huang, Z., Jiang, H., He, F., Chen, D., Wei, G., Zhao, K., et al. (2016). Evaluation of multi-cycle performance of chemical looping dry reforming using CO2 as an oxidant with Fe–Ni bimetallic oxides. Journal of Energy Chemistry, 25(1), 62–70.
O’Brien, J. E., McKellar, M. G., Stoots, C. M., Herring, J. S., & Hawkes, G. L. (2009). Parametric study of large-scale production of syngas via high-temperature co-electrolysis. International Journal of Hydrogen Energy, 34(9), 4216–4226.
Stoots, C., O’brien, J., & Hartvigsen, J. (2009). Results of recent high temperature coelectrolysis studies at the idaho national laboratory. International Journal of Hydrogen Energy, 34(9), 4208–4215.
Stoots, C. M., O’Brien, J. E., Herring, J. S., & Hartvigsen, J. J. (2009). Syngas production via high-temperature coelectrolysis of steam and carbon dioxide. Journal of Fuel Cell Science and Technology, 6(1), 011014. 1. https:/
Fu, Q., Mabilat, C., Zahid, M., Brisse, A., & Gautier, L. (2010). Syngas production via high-temperature steam/CO2 co-electrolysis: an economic assessment. Energy & Environmental Science, 3(10), 1382–1397.
O’brien, J. E., McKellar, M. G., Harvego, E. A., & Stoots, C. M. (2010). High-temperature electrolysis for large-scale hydrogen and syngas production from nuclear energy–summary of system simulation and economic analyses. International Journal of Hydrogen Energy, 35(10), 4808–4819.
Kim, S. W., Kim, H., Yoon, K. J., Lee, J. H., Kim, B. K., Choi, W., et al. (2015). Reactions and mass transport in high temperature co-electrolysis of steam/CO2 mixtures for syngas production. Journal of Power Sources, 280, 630–639.
Menon, V., Fu, Q., Janardhanan, V. M., & Deutschmann, O. (2015). A model-based understanding of solid-oxide electrolysis cells (SOECs) for syngas production by H2O/CO2 co-electrolysis. Journal of Power Sources, 274, 768–781.
Li, Y. C., Zhou, D., Yan, Z., Gonçalves, R. H., Salvatore, D. A., Berlinguette, C. P., et al. (2016). Electrolysis of CO2 to syngas in bipolar membrane-based electrochemical cells. ACS Energy Letters, 1(6), 1149–1153.
Liu, Z., Masel, R. I., Chen, Q., Kutz, R., Yang, H., Lewinski, K., et al. (2016). Electrochemical generation of syngas from water and carbon dioxide at industrially important rates. Journal of CO2 Utilization, 15, 50–56.
Wang, Y., Liu, T., Lei, L., & Chen, F. (2017). High temperature solid oxide H2O/CO2 co-electrolysis for syngas production. Fuel Processing Technology, 161, 248–258.
Diaz, L. A., Gao, N., Adhikari, B., Lister, T. E., Dufek, E. J., & Wilson, A. D. (2018). Electrochemical production of syngas from CO2 captured in switchable polarity solvents. Green Chemistry, 20(3), 620–626.
Chen, P., Jiao, Y., Zhu, Y. H., Chen, S. M., Song, L., Jaroniec, M., et al. (2019). Syngas production from electrocatalytic CO2 reduction with high energetic efficiency and current density. Journal of Materials Chemistry A, 7(13), 7675–7682.
Li, Y. C., Lee, G., Yuan, T., Wang, Y., Nam, D. H., Wang, Z., et al. (2019). CO2 electroreduction from carbonate electrolyte. ACS Energy Letters, 4(6), 1427–1431.
Daiyan, R., Lovell, E. C., Huang, B., Zubair, M., Leverett, J., Zhang, Q., et al. (2020). Uncovering atomic‐scale stability and reactivity in engineered zinc oxide electrocatalysts for controllable syngas production. Advanced Energy Materials, 10(28), 2001381.
Gao, N., Quiroz-Arita, C., Diaz, L. A., & Lister, T. E. (2021). Intensified co-electrolysis process for syngas production from captured CO2. Journal of CO2 Utilization, 43, 101365.
Zhao, J., Deng, J., Han, J., Imhanria, S., Chen, K., & Wang, W. (2020). Effective tunable syngas generation via CO2 reduction reaction by non-precious Fe-NC electrocatalyst. Chemical Engineering Journal, 389, 124323.
Moreno-Gonzalez, M., Berger, A., Borsboom-Hanson, T., & Mérida, W. (2021). Carbon-neutral fuels and chemicals: Economic analysis of renewable syngas pathways via CO2 electrolysis. Energy Conversion and Management, 244, 114452.
Song, G., Wang, L., Yao, A., Cui, X., & Xiao, J. (2021). Technical and economic assessment of a high-quality syngas production process integrating oxygen gasification and water electrolysis: the Chinese case. ACS Omega, 6(42), 27851–27864.
Wolf, S. E., Dittrich, L., Nohl, M., Foit, S., Vinke, I., De Haart, L. G. J., et al. (2021). Boundaries of High-Temperature Co-Electrolysis Towards Direct CO2-Electrolysis. ECS Transactions, 103(1), 493.
Xiao, Y. C., Gabardo, C. M., Liu, S., Lee, G., Zhao, Y., O’Brien, C. P., et al. (2023). Direct carbonate electrolysis into pure syngas. EES Catalysis, 1(1), 54–61.
Vennekötter, J. B., Scheuermann, T., Sengpiel, R., & Wessling, M. (2019). The electrolyte matters: Stable systems for high rate electrochemical CO2 reduction. Journal of CO2 Utilization, 32, 202–213.
Raya-Imbernón, A., Samu, A. A., Barwe, S., Cusati, G., Fődi, T., Hepp, B. M., et al. (2023). Renewable Syngas Generation via Low-Temperature Electrolysis: Opportunities and Challenges. ACS Energy Letters, 9(1), 288–297.
Hirata, Y., Terasawa, Y., Matsunaga, N., & Sameshima, S. (2009). Development of electrochemical cell with layered composite of the Gd-doped ceria/electronic conductor system for generation of H2–CO fuel through oxidation–reduction of CH4–CO2 mixed gases. Ceramics International, 35(5), 2023–2028.
Dufek, E. J., Lister, T. E., & McIlwain, M. E. (2011). Bench-scale electrochemical system for generation of CO and syn-gas. Journal of Applied Electrochemistry, 41, 623–631.
O’rear, D. J. (2004). Process for conversion of lpg and CH4 to syngas and higher valued products (Patent No. US6774148). U.S. Patent and Trade Mark Office.
Johnston, D. A. (2008). Carbon dioxide absorbed from air and hydrogen from electrolysis of water, for production of carbon monoxide, alcohols, Fischer-Tropsch hydrocarbons & fuels (Patent No. GB2448685). UK Patent and Trade Mark Office.
Olah, G. A., & Prakash, G. K. S. (2010). Electrolysis of carbon dioxide in aqueous media to carbon monoxide and hydrogen for production of methanol (Patent No. US7704369). U.S. Patent and Trade Mark Office.
Olah, G. A., & Prakash, G. K. S. (2012). Electrolysis of carbon dioxide in aqueous media to carbon monoxide and hydrogen for production of methanol (Patent No. US8138380). U.S. Patent and Trade Mark Office.
Rüger, D. (2018). Synthesis gas production from CO2 and H2O in a CO-electrolysis (Patent No. WO2018228643). WIPO.
Omersa, K. (2021). Carbon dioxide conversion using combined fuel cell and electrolysis cell (Patent No. US2021313608). U.S. Patent and Trade Mark Office.
Fontecave, M., Mougel, V., Tran, N. H., Wakerley, D., & Lamaison, S. (2022). Method for converting carbon dioxide (CO2) into syngas by an electrolysis reaction (Patent No. US2022064804). U.S. Patent and Trade Mark Office.
Rüger, D. (2022). Synthesis gas production from CO2 and H2O in a CO-electrolysis (Patent No. US11214488). U.S. Patent and Trade Mark Office.
Sivasankar, N., Cole, E. B., & Teamey, K. (2014). Electrochemical production of synthesis gas from carbon dioxide (Patent No. US8721866). U.S. Patent and Trade Mark Office.
Sivasankar, N., Cole, E. B., & Teamey, K. (2018). Electrochemical production of synthesis gas from carbon dioxide (Patent No. US10119196). U.S. Patent and Trade Mark Office.
Zhang, C., Pan, L., Guo, H., Xu, X., & Wang, J. (2022). System for preparing synthesis gas by reducing electrolytic urea-carbon dioxide (Patent No. CN218115613). China National Intellectual Property Administration.
Lister, T. E., Dufek, E. J., Wilson, A. D., Diaz Aldana, L. A., Adhikari, B., & Gao, N. (2019). Methods and systems for the electrochemical reduction of carbon dioxide using switchable polarity materials (Patent No. WO2019070526). WIPO.
Lister, T. E., Dufek, E. J., Wilson, A. D., Diaz Aldana, L. A., Adhikari, B., & Gao, N. (2021). Methods and systems for the electrochemical reduction of carbon dioxide using switchable polarity materials (Patent No. US10975477). U.S. Patent and Trade Mark Office.
Kugeler, K., Niessen, H. F., Röth-Kamat, M., Böcker, D., Rüter, B., & Theis, K. A. (1975). Transport of nuclear heat by means of chemical energy (nuclear long-distance energy). Nuclear Engineering and Design, 34(1), 65–72.
Vakil, H. B., & Kosky, P. G. (1976). Design analyses of a methane-based chemical heat pipe. In Proceedings of the 11th Intersoc Energy Convers Eng Conf (pp. 659–664). AIChE.
Arcilla, N. T., & Plumlee, D. E. (1981). Methanation of CO and CO2 for heat production. In Proceedings of the Intersociety Energy Conversion Engineering Conference (pp. 1185–1190). ASME.
Höhlein, B., Menzer, R., & Range, J. (1981). High temperature methanation in the long-distance nuclear energy transport system. Applied Catalysis, 1(3–4), 125–139.
Suzuki, K., Takaya, H., Araki, M., Ogawa, K., Hosoya, T., & Todo, N. (1982). Thermally stable nickel-molybdenum alloy catalysts supported on zirconia for high temperature methanation. Journal of The Japan Petroleum Institute, 25(5), 323–330.
Fraenkel, D., Levitan, R., & Levy, M. (1986). A solar thermochemical pipe based on the CO2:CH4 (1:1) system. International Journal of Hydrogen Energy, 11(4), 267–277.
Osterle, F. (1988). Thermodynamic analysis of the chemical heat pipe as a closed cycle gas turbine. In Proceedings of the ASME 1988 International Gas Turbine and Aeroengine Congress and Exposition. Volume 3: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations. American Society of Mechanical Engineers (ASME).
Levitan, R., Levy, M., Rosin, H., & Rubin, R. (1991). Closed-loop operation of a solar chemical heat pipe at the Weizmann Institute solar furnace. Solar Energy Materials, 24(1–4), 464–477.
Strumpf, H. J., Chin, C. Y., Lester, G. R., & Homeyer, S. T. (1991). Sabatier carbon dioxide reduction system for long-duration manned space application. SAE Transactions, 1734–1745.
Rubin, R., Levitan, R., Rosin, H., & Levy, M. (1992). Methanation of synthesis gas in a solar chemical heat pipe. Energy, 17(12), 1109–1119.
Levy, M., Levitan, R., Rosin, H., & Rubin, R. (1993). Solar energy storage via a closed-loop chemical heat pipe. Solar Energy, 50(2), 179–189.
Segal, A., & Levy, M. (1993). Solar chemical heat pipe in closed loop operation: mathematical model and experiments. Solar Energy, 51(5), 367–376.
Berman, A., Levitan, R., Epstein, M., & Levy, M. (1996). Ruthenium methanation and reforming catalysts for solar chemical heat pipe. American Society of Mechanical Engineers.
Brooks, K. P., Hu, J., Zhu, H., & Kee, R. J. (2007). Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors. Chemical Engineering Science, 62(4), 1161–1170.
Hoekman, S. K., Broch, A., Robbins, C., & Purcell, R. (2010). CO2 recycling by reaction with renewably-generated hydrogen. International Journal of Greenhouse Gas Control, 4(1), 44–50.
Aldana, P. U., Ocampo, F., Kobl, K., Louis, B., Thibault-Starzyk, F., Daturi, M., et al. (2013). Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy. Catalysis Today, 215, 201–207.
Barbarossa, V., Bassano, C., Deiana, P., & Vanga, G. (2013). CO2 conversion to CH4. In CO2: A Valuable Source of Carbon (pp. 123–145). Springer.
Gruber, M., Harth, S., & Trimis, D. (2013). Integrated high-temperature electrolysis and methanation (helmeth) technology: The methanation process. (accessed 18 March 2022).
Müller, K., Fleige, M., Rachow, F., & Schmeißer, D. (2013). Sabatier based CO2-methanation of flue gas emitted by conventional power plants. Energy Procedia, 40, 240–248.
Müller, K., Städter, M., Rachow, F., Hoffmannbeck, D., & Schmeißer, D. (2013). Sabatier-based CO2-methanation by catalytic conversion. Environmental Earth Sciences, 70, 3771–3778.
Hashimoto, K., Kumagai, N., Izumiya, K., Takano, H., & Kato, Z. (2014). The production of renewable energy in the form of methane using electrolytic hydrogen generation. Energy, Sustainability and Society, 4, 1–9.
Jürgensen, L., Ehimen, E. A., Born, J., & Holm-Nielsen, J. B. (2014). Utilization of surplus electricity from wind power for dynamic biogas upgrading: Northern Germany case study. Biomass and Bioenergy, 66, 126–132.
Manthiram, K., Beberwyck, B. J., & Alivisatos, A. P. (2014). Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. Journal of the American Chemical Society, 136(38), 13319–13325.
Newton, J. (12–13 March 2014). Power-to-gas and methanation - pathways to a ‘hydrogen economy. The 14th Annual Apgtf Workshop, London, UK.
Schaaf, T., Grünig, J., Schuster, M. R., Rothenfluh, T., & Orth, A. (2014). Methanation of CO2-storage of renewable energy in a gas distribution system. Energy, Sustainability and Society, 4(1), 2.
Schlereth, D., & Hinrichsen, O. (2014). A fixed-bed reactor modeling study on the methanation of CO2. Chemical Engineering Research and Design, 92(4), 702–712.
Walspurger, S., Elzinga, G. D., Dijkstra, J. W., Sarić, M., & Haije, W. G. (2014). Sorption enhanced methanation for substitute natural gas production: Experimental results and thermodynamic considerations. Chemical Engineering Journal, 242, 379–386.
Giglio, E., Lanzini, A., Santarelli, M., & Leone, P. (2015). Synthetic natural gas via integrated high-temperature electrolysis and methanation: Part II—Economic analysis. Journal of Energy Storage, 2, 64–79.
Giglio, E., Lanzini, A., Santarelli, M., & Leone, P. (2015). Synthetic natural gas via integrated high-temperature electrolysis and methanation: Part I—Energy performance. Journal of Energy Storage, 1, 22–37.
Jürgensen, L., Ehimen, E. A., Born, J., & Holm-Nielsen, J. B. (2015). Dynamic biogas upgrading based on the Sabatier process: Thermodynamic and dynamic process simulation. Bioresource Technology, 178, 323–329.
Jürgensen, L., Ehimen, E. A., Born, J., Holm-Nielsen, J. B., & Rooney, D. (2015). Influence of trace substances on methanation catalysts used in dynamic biogas upgrading. Bioresource Technology, 178, 319–322.
Lefebvre, J., Götz, M., Bajohr, S., Reimert, R., & Kolb, T. (2015). Improvement of three-phase methanation reactor performance for steady-state and transient operation. Fuel Processing Technology, 132, 83–90.
Schiebahn, S., Grube, T., Robinius, M., Tietze, V., Kumar, B., & Stolten, D. (2015). Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany. International Journal of Hydrogen Energy, 40(12), 4285–4294.
Abate, S., Mebrahtu, C., Giglio, E., Deorsola, F., Bensaid, S., Perathoner, S., et al. (2016). Catalytic performance of γ-Al2O3–ZrO2–TiO2–CeO2 composite oxide supported Ni-based catalysts for CO2 methanation. Industrial & Engineering Chemistry Research, 55(16), 4451–4460.
García-García, I., Izquierdo, U., Barrio, V. L., Arias, P. L., & Cambra, J. F. (2016). Power-to-Gas: Storing surplus electrical energy. Study of Al2O3 support modification. International Journal of Hydrogen Energy, 41(43), 19587–19594.
Götz, M., Lefebvre, J., Mörs, F., Koch, A. M., Graf, F., Bajohr, S., et al. (2016). Renewable Power-to-Gas: A technological and economic review. Renewable Energy, 85, 1371–1390.
Lazdans, A., Dace, E., & Gusca, J. (2016). Development of the experimental scheme for methanation process. Energy Procedia, 95, 540–545.
Bremer, J., Rätze, K. H., & Sundmacher, K. (2017). CO2 methanation: Optimal start‐up control of a fixed‐bed reactor for power‐to‐gas applications. AIChE Journal, 63(1), 23–31.
Castellani, B., Morini, E., Bonamente, E., & Rossi, F. (2017). Experimental investigation and energy considerations on hydrate-based biogas upgrading with CO2 valorization. Biomass and Bioenergy, 105, 364–372.
Díez-Ramírez, J., Sánchez, P., Kyriakou, V., Zafeiratos, S., Marnellos, G. E., Konsolakis, M., et al. (2017). Effect of support nature on the cobalt-catalyzed CO2 hydrogenation. Journal of CO2 Utilization, 21, 562–571.
Kezibri, N., & Bouallou, C. (2017). Conceptual design and modelling of an industrial scale power to gas-oxy-combustion power plant. International Journal of Hydrogen Energy, 42(30), 19411–19419.
Leonzio, G. (2017). Design and feasibility analysis of a Power-to-Gas plant in Germany. Journal of Cleaner Production, 162, 609–623.
Meylan, F. D., Piguet, F. P., & Erkman, S. (2017). Power-to-gas through CO2 methanation: Assessment of the carbon balance regarding EU directives. Journal of Energy Storage, 11, 16–24.
Stangeland, K., Kalai, D., Li, H., & Yu, Z. (2017). CO2 methanation: the effect of catalysts and reaction conditions. Energy Procedia, 105, 2022–2027.
Sun, D., & Simakov, D. S. (2017). Thermal management of a Sabatier reactor for CO2 conversion into CH4: Simulation-based analysis. Journal of CO2 Utilization, 21, 368–382.
Beierlein, D., Schirrmeister, S., Traa, Y., & Klemm, E. (2018). Experimental approach for identifying hotspots in lab-scale fixed-bed reactors exemplified by the Sabatier reaction. Reaction Kinetics, Mechanisms and Catalysis, 125, 157–170.
Castellani, B., Rinaldi, S., Bonamente, E., Nicolini, A., Rossi, F., & Cotana, F. (2018). Carbon and energy footprint of the hydrate-based biogas upgrading process integrated with CO2 valorization. Science of the Total Environment, 615, 404–411.
Er-Rbib, H., Kezibri, N., & Bouallou, C. (2018). Performance assessment of a power-to-gas process based on reversible solid oxide cell. Frontiers of Chemical Science and Engineering, 12, 697–707.
Falbo, L., Martinelli, M., Visconti, C. G., Lietti, L., Bassano, C., & Deiana, P. (2018). Kinetics of CO2 methanation on a Ru-based catalyst at process conditions relevant for Power-to-Gas applications. Applied Catalysis B: Environmental, 225, 354–363.
García-García, I., Barrio, V. L., & Cambra, J. F. (2018). Power-to-Gas: Storing surplus electrical energy. Study of catalyst synthesis and operating conditions. International Journal of Hydrogen Energy, 43(37), 17737–17747.
Giglio, E., Deorsola, F. A., Gruber, M., Harth, S. R., Morosanu, E. A., Trimis, D., et al. (2018). Power-to-gas through high temperature electrolysis and carbon dioxide methanation: reactor design and process modeling. Industrial & Engineering Chemistry Research, 57(11), 4007–4018.
Gruber, M., Weinbrecht, P., Biffar, L., Harth, S., Trimis, D., Brabandt, J., et al. (2018). Power-to-Gas through thermal integration of high-temperature steam electrolysis and carbon dioxide methanation-Experimental results. Fuel Processing Technology, 181, 61–74.
Iaquaniello, G., Setini, S., Salladini, A., & De Falco, M. (2018). CO2 valorization through direct methanation of flue gas and renewable hydrogen: A technical and economic assessment. International Journal of Hydrogen Energy, 43(36), 17069–17081.
Inkeri, E., Tynjälä, T., Laari, A., & Hyppänen, T. (2018). Dynamic one-dimensional model for biological methanation in a stirred tank reactor. Applied Energy, 209, 95–107.
Luo, Y., Shi, Y., Li, W., & Cai, N. (2018). Synchronous enhancement of H2O/CO2 co-electrolysis and methanation for efficient one-step power-to-methane. Energy Conversion and Management, 165, 127–136.
Mebrahtu, C., Abate, S., Chen, S., Sierra Salazar, A. F., Perathoner, S., Krebs, F., et al. (2018). Enhanced catalytic activity of iron-promoted nickel on γ-Al2O3 nanosheets for carbon dioxide methanation. Energy Technology, 6(6), 1196–1207.
Mebrahtu, C., Abate, S., Perathoner, S., Chen, S., & Centi, G. (2018). CO2 methanation over Ni catalysts based on ternary and quaternary mixed oxide: A comparison and analysis of the structure-activity relationships. Catalysis Today, 304, 181–189.
Schollenberger, D., Bajohr, S., Gruber, M., Reimert, R., & Kolb, T. (2018). Scale‐Up of Innovative Honeycomb Reactors for Power‐to‐Gas Applications–The Project Store&Go. Chemie Ingenieur Technik, 90(5), 696–702.
Toro, C., & Sciubba, E. (2018). Sabatier based power-to-gas system: Heat exchange network design and thermoeconomic analysis. Applied Energy, 229, 1181–1190.
Van Dael, M., Kreps, S., Virag, A., Kessels, K., Remans, K., Thomas, D., et al. (2018). Techno-economic assessment of a microbial power-to-gas plant–Case study in Belgium. Applied Energy, 215, 416–425.
Veselovskaya, J. V., Parunin, P. D., Netskina, O. V., Kibis, L. S., Lysikov, A. I., & Okunev, A. G. (2018). Catalytic methanation of carbon dioxide captured from ambient air. Energy, 159, 766–773.
Veselovskaya, J. V., Parunin, P. D., Netskina, O. V., & Okunev, A. G. (2018). A novel process for renewable methane production: combining direct air capture by K2CO3/alumina sorbent with CO2 methanation over Ru/alumina catalyst. Topics in Catalysis, 61, 1528–1536.
Vo, T. T., Wall, D. M., Ring, D., Rajendran, K., & Murphy, J. D. (2018). Techno-economic analysis of biogas upgrading via amine scrubber, carbon capture and ex-situ methanation. Applied Energy, 212, 1191–1202.
Witte, J., Kunz, A., Biollaz, S. M., & Schildhauer, T. J. (2018). Direct catalytic methanation of biogas–Part II: Techno-economic process assessment and feasibility reflections. Energy Conversion and Management, 178, 26–43.
Witte, J., Settino, J., Biollaz, S. M., & Schildhauer, T. J. (2018). Direct catalytic methanation of biogas–Part I: new insights into biomethane production using rate-based modelling and detailed process analysis. Energy Conversion and Management, 171, 750–768.
Bassano, C., Deiana, P., Lietti, L., & Visconti, C. G. (2019). P2G movable modular plant operation on synthetic methane production from CO2 and hydrogen from renewables sources. Fuel, 253, 1071–1079.
Cao, X., Bao, H., & Peng, Y. (2019). A kinetic model for isotopologue signatures of methane generated by biotic and abiotic CO2 methanation. Geochimica et Cosmochimica Acta, 249, 59–75.
Moioli, E., Gallandat, N., & Züttel, A. (2019). Model based determination of the optimal reactor concept for Sabatier reaction in small-scale applications over Ru/Al2O3. Chemical Engineering Journal, 375, 121954.
Moioli, E., Gallandat, N., & Züttel, A. (2019). Parametric sensitivity in the Sabatier reaction over Ru/Al2O3–theoretical determination of the minimal requirements for reactor activation. Reaction Chemistry & Engineering, 4(1), 100–111.
Neuberg, S., Pennemann, H., Shanmugam, V., Thiermann, R., Zapf, R., Gac, W., et al. (2019). CO2 methanation in microstructured reactors–catalyst development and process design. Chemical Engineering & Technology, 42(10), 2076–2084.
Pérez, S., Aragón, J. J., Peciña, I., & Garcia-Suarez, E. J. (2019). Enhanced CO2 methanation by new microstructured reactor concept and design. Topics in Catalysis, 62(5), 518–523.
Pérez, S., Del Molino, E., & Barrio, V. L. (2019). Modeling and testing of a milli-structured reactor for carbon dioxide methanation. International Journal of Chemical Reactor Engineering, 17(11), 20180238.
Thema, M., Bauer, F., & Sterner, M. (2019). Power-to-Gas: Electrolysis and methanation status review. Renewable and Sustainable Energy Reviews, 112, 775–787.
Uebbing, J., Rihko-Struckmann, L. K., & Sundmacher, K. (2019). Exergetic assessment of CO2 methanation processes for the chemical storage of renewable energies. Applied Energy, 233, 271–282.
Vogt, C., Monai, M., Kramer, G. J., & Weckhuysen, B. M. (2019). The renaissance of the Sabatier reaction and its applications on Earth and in space. Nature Catalysis, 2(3), 188–197.
Wang, W., Duong-Viet, C., Xu, Z., Ba, H., Tuci, G., Giambastiani, G., et al. (2020). CO2 methanation under dynamic operational mode using nickel nanoparticles decorated carbon felt (Ni/OCF) combined with inductive heating. Catalysis Today, 357, 214–220.
Hidalgo, D., & Martín-Marroquín, J. M. (2020). Power-to-methane, coupling CO2 capture with fuel production: An overview. Renewable and Sustainable Energy Reviews, 132, 110057.
Tripodi, A., Conte, F., & Rossetti, I. (2020). Carbon dioxide methanation: design of a fully integrated plant. Energy & Fuels, 34(6), 7242–7256.
Chubb, T. A. (1982). Thermochemical energy transport process (Patent No. US4347891). U.S. Patent and Trade Mark Office.
Chubb, T. A. (1984). Thermochemical energy transport using a hydrogen rich working fluid (Patent No. US4484618). U.S. Patent and Trade Mark Office.
Li, Y., Wang, Y., Zhang, Z., Hong, X., & Liu, Y. (2008). Oxidative reformings of methane to syngas with steam and CO2 catalyzed by metallic Ni based monolithic catalysts. Catalysis Communications, 9(6), 1040–1044.
Gao, J., Hou, Z., Liu, X., Zeng, Y., Luo, M., & Zheng, X. (2009). Methane autothermal reforming with CO2 and O2 to synthesis gas at the boundary between Ni and ZrO2. International Journal of Hydrogen Energy, 34(9), 3734–3742.
Múnera, J. F., Carrara, C., Cornaglia, L. M., & Lombardo, E. A. (2010). Combined oxidation and reforming of methane to produce pure H2 in a membrane reactor. Chemical Engineering Journal, 161(1–2), 204–211.
Zhao, W., Ding, M., Yang, P., Wang, Q., Zhang, K., Zhan, X., et al. (2023). Pit-embellished low-valent metal active sites customize CO2 photoreduction to methanol. EES Catalysis, 1(1), 36–44.
Sharma, I., Shah, V., & Shah, M. (2022). A comprehensive study on production of methanol from wind energy. Environmental Technology & Innovation, 28, 102589.
Li, W., Zhang, J., Jiang, X., Mu, M., Zhang, A., Song, C., et al. (2022). Co-promoted In2O3/ZrO2 integrated with ultrathin nanosheet HZSM-5 as efficient catalysts for CO2 hydrogenation to gasoline. Industrial & Engineering Chemistry Research, 61(19), 6322–6332.
Zhang, X., Zhang, G., Song, C., & Guo, X. (2021). Catalytic conversion of carbon dioxide to methanol: Current status and future perspective. Frontiers in Energy Research, 8, 621119.
Xaba, B. S., Mahomed, A. S., & Friedrich, H. B. (2021). The effect of CO2 and H2 adsorption strength and capacity on the performance of Ga and Zr modified Cu-Zn catalysts for CO2 hydrogenation to methanol. Journal of Environmental Chemical Engineering, 9(1), 104834.
Wang, J., Zhang, G., Zhu, J., Zhang, X., Ding, F., Zhang, A., et al. (2021). CO2 hydrogenation to methanol over In2O3-based catalysts: from mechanism to catalyst development. ACS Catalysis, 11(3), 1406–1423.
Stolar, T., Prašnikar, A., Martinez, V., Karadeniz, B., Bjelic, A., Mali, G., et al. (2021). Scalable mechanochemical amorphization of bimetallic Cu-Zn MOF-74 catalyst for selective CO2 reduction reaction to methanol. ACS Applied Materials & Interfaces, 13(2), 3070–3077.
Qi, T., Zhao, Y., Chen, S., Li, W., Guo, X., Zhang, Y., et al. (2021). Bimetallic metal organic framework-templated synthesis of a Cu-ZnO/Al2O3 catalyst with superior methanol selectivity for CO2 hydrogenation. Molecular Catalysis, 514, 111870.
Pratschner, S., Skopec, P., Hrdlicka, J., & Winter, F. (2021). Power-to-Green Methanol via CO2 Hydrogenation—A Concept Study including Oxyfuel Fluidized Bed Combustion of Biomass. Energies, 14(15), 4638.
Nguyen, T. T., Yamaki, T., Taniguchi, S., Endo, A., & Kataoka, S. (2021). Integrating life cycle assessment for design and optimization of methanol production from combining methane dry reforming and partial oxidation. Journal of Cleaner Production, 292, 125970.
Nezam, I., Zhou, W., Gusmão, G. S., Realff, M. J., Wang, Y., Medford, A. J., et al. (2021). Direct aromatization of CO2 via combined CO2 hydrogenation and zeolite-based acid catalysis. Journal of CO2 Utilization, 45, 101405.
Mansoor, R., & Tahir, M. (2021). Recent developments in natural gas flaring reduction and reformation to energy-efficient fuels: a review. Energy & Fuels, 35(5), 3675–3714.
Liu, T., Xu, D., Wu, D., Liu, G., & Hong, X. (2021). Spinel ZnFe2O4 regulates copper sites for CO2 hydrogenation to methanol. ACS Sustainable Chemistry & Engineering, 9(11), 4033–4041.
Lin, F., Jiang, X., Boreriboon, N., Song, C., Wang, Z., & Cen, K. (2021). CO2 hydrogenation to methanol over bimetallic Pd-Cu catalysts supported on TiO2-CeO2 and TiO2-ZrO2. Catalysis Today, 371, 150–161.
Kanega, R., Onishi, N., Tanaka, S., Kishimoto, H., & Himeda, Y. (2021). Catalytic hydrogenation of CO2 to methanol using multinuclear iridium complexes in a gas–solid phase reaction. Journal of the American Chemical Society, 143(3), 1570–1576.
Francis, A., Kumar, H., Sudhakar, K., & Tahir, M. (2021). A review on recent developments in solar photoreactors for carbon dioxide conversion to fuels. Journal of CO2 Utilization, 47, 101515. h
Din, I. U., Usman, M., Khan, S., Helal, A., Alotaibi, M. A., Alharthi, A. I., et al. (2021). Prospects for a green methanol thermo-catalytic process from CO2 by using MOFs based materials: A mini-review. Journal of CO2 Utilization, 43, 101361.
Bisotti, F., Fedeli, M., Prifti, K., Galeazzi, A., Dell’Angelo, A., Barbieri, M., et al. (2021). Century of technology trends in methanol synthesis: any need for kinetics refitting? Industrial & Engineering Chemistry Research, 60(44), 16032–16053.
Atsbha, T. A., Yoon, T., Seongho, P., & Lee, C. J. (2021). A review on the catalytic conversion of CO2 using H2 for synthesis of CO, methanol, and hydrocarbons. Journal of CO2 Utilization, 44, 101413.
Albo, J., & García, G. (2021). Enhanced visible-light photoreduction of CO2 to methanol over Mo2C/TiO2 surfaces in an optofluidic microreactor. Reaction Chemistry & Engineering, 6(2), 304–312.
Wang, L., Guan, E., Wang, Y., Wang, L., Gong, Z., Cui, Y., et al. (2020). Silica accelerates the selective hydrogenation of CO2 to methanol on cobalt catalysts. Nature Communications, 11(1), 1033.
Meunier, N., Chauvy, R., Mouhoubi, S., Thomas, D., & De Weireld, G. (2020). Alternative production of methanol from industrial CO2. Renewable Energy, 146, 1192–1203.
Jiang, X., Nie, X., Guo, X., Song, C., & Chen, J. G. (2020). Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chemical Reviews, 120(15), 7984–8034.
Moioli, E., Mutschler, R., & Züttel, A. (2019). Renewable energy storage via CO2 and H2 conversion to methane and methanol: Assessment for small scale applications. Renewable and Sustainable Energy Reviews, 107, 497–506.
Lin, F., Jiang, X., Boreriboon, N., Wang, Z., Song, C., & Cen, K. (2019). Effects of supports on bimetallic Pd-Cu catalysts for CO2 hydrogenation to methanol. Applied Catalysis A: General, 585, 117210.
Hou, X. X., Xu, C. H., Liu, Y. L., Li, J. J., Hu, X. D., Liu, J., et al. (2019). Improved methanol synthesis from CO2 hydrogenation over CuZnAlZr catalysts with precursor pre-activation by formaldehyde. Journal of Catalysis, 379, 147–153.
Zhan, H., Wu, Z., Zhao, N., Liu, W., & Wei, W. (2018). Structural properties and catalytic performance of the LaCuZn mixed oxides for CO2 hydrogenation to methanol. Journal of Rare Earths, 36(3), 273–280.
Yuan, J., Yang, M. P., Hu, Q. L., Li, S. M., Wang, H., & Lu, J. X. (2018). Cu/TiO2 nanoparticles modified nitrogen-doped graphene as a highly efficient catalyst for the selective electroreduction of CO2 to different alcohols. Journal of CO2 Utilization, 24, 334–340.
Xu, D., Cheng, B., Wang, W., Jiang, C., & Yu, J. (2018). Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity. Applied Catalysis B: Environmental, 231, 368–380.
Witoon, T., Numpilai, T., Phongamwong, T., Donphai, W., Boonyuen, C., Warakulwit, C., et al. (2018). Enhanced activity, selectivity and stability of a CuO-ZnO-ZrO2 catalyst by adding graphene oxide for CO2 hydrogenation to methanol. Chemical Engineering Journal, 334, 1781–1791.
Wang, L., Ghoussoub, M., Wang, H., Shao, Y., Sun, W., Tountas, A. A., et al. (2018). Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure. Joule, 2(7), 1369–1381.
Tisseraud, C., Comminges, C., Habrioux, A., Pronier, S., Pouilloux, Y., & Le Valant, A. (2018). Cu-ZnO catalysts for CO2 hydrogenation to methanol: Morphology change induced by ZnO lixiviation and its impact on the active phase formation. Molecular Catalysis, 446, 98–105.
Tang, Q., Shen, Z., Russell, C. K., & Fan, M. (2018). Thermodynamic and kinetic study on carbon dioxide hydrogenation to methanol over a Ga3Ni5 (111) surface: The effects of step edge. The Journal of Physical Chemistry C, 122(1), 315–330.
Szima, S., & Cormos, C. C. (2018). Improving methanol synthesis from carbon-free H2 and captured CO2: A techno-economic and environmental evaluation. Journal of CO2 Utilization, 24, 555–563.
Nieminen, H., Givirovskiy, G., Laari, A., & Koiranen, T. (2018). Alcohol promoted methanol synthesis enhanced by adsorption of water and dual catalysts. Journal of CO2 Utilization, 24, 180–189.
Maru, M. S., Ram, S., Shukla, R. S., & Noor-ul, H. K. (2018). Ruthenium-hydrotalcite (Ru-HT) as an effective heterogeneous catalyst for the selective hydrogenation of CO2 to formic acid. Molecular Catalysis, 446, 23–30.
Marlin, D. S., Sarron, E., & Sigurbjörnsson, Ó. (2018). Process advantages of direct CO2 to methanol synthesis. Frontiers in Chemistry, 6, 446.
Liu, W. C., Baek, J., & Somorjai, G. A. (2018). The methanol economy: methane and carbon dioxide conversion. Topics in Catalysis, 61, 530–541.
Li, M. M. J., & Tsang, S. C. E. (2018). Bimetallic catalysts for green methanol production via CO2 and renewable hydrogen: a mini-review and prospects. Catalysis Science & Technology, 8(14), 3450–3464.
Lais, A., Gondal, M. A., Dastageer, M. A., & Al‐Adel, F. F. (2018). Experimental parameters affecting the photocatalytic reduction performance of CO2 to methanol: a review. International Journal of Energy Research, 42(6), 2031–2049.
Lais, A., Gondal, M. A., & Dastageer, M. A. (2018). Semiconducting oxide photocatalysts for reduction of CO2 to methanol. Environmental Chemistry Letters, 16, 183–210.
Koh, M. K., Wong, Y. J., Chai, S. P., & Mohamed, A. R. (2018). Carbon dioxide hydrogenation to methanol over multi-functional catalyst: Effects of reactants adsorption and metal-oxide(s) interfacial area. Journal of Industrial and Engineering Chemistry, 62, 156–165.
Koh, M. K., Khavarian, M., Chai, S. P., & Mohamed, A. R. (2018). The morphological impact of siliceous porous carriers on copper-catalysts for selective direct CO2 hydrogenation to methanol. International Journal of Hydrogen Energy, 43(19), 9334–9342.
Kar, S., Sen, R., Goeppert, A., & Prakash, G. S. (2018). Integrative CO2 capture and hydrogenation to methanol with reusable catalyst and amine: toward a carbon neutral methanol economy. Journal of the American Chemical Society, 140(5), 1580–1583.
Kar, S., Kothandaraman, J., Goeppert, A., & Prakash, G. S. (2018). Advances in catalytic homogeneous hydrogenation of carbon dioxide to methanol. Journal of CO2 Utilization, 23, 212–218.
Jiang, X., Wang, X., Nie, X., Koizumi, N., Guo, X., & Song, C. (2018). CO2 hydrogenation to methanol on Pd-Cu bimetallic catalysts: H2/CO2 ratio dependence and surface species. Catalysis Today, 316, 62–70.
Bayomie, O. S., & Bouallou, C. (2018). Energy and conversion investigations of different process configurations for hydrogenation of CO2 into methanol from industrial flue gases. Chemical Engineering Transactions, 70, 1345–1350.
Bahruji, H., Esquius, J. R., Bowker, M., Hutchings, G., Armstrong, R. D., & Jones, W. (2018). Solvent free synthesis of PdZn/TiO2 catalysts for the hydrogenation of CO2 to methanol. Topics in Catalysis, 61, 144–153.
Al-Saydeh, S. A., & Zaidi, S. J. (2018). Carbon dioxide conversion to methanol: Opportunities and fundamental challenges. In I. Karamé, J. Shaya, & H. Srour (Eds.), Carbon Dioxide Chemistry, Capture and Oil Recovery (pp. 42–64). InTechOpen.
Zhao, F., Gong, M., Cao, K., Zhang, Y., Li, J., & Chen, R. (2017). Atomic layer deposition of Ni on Cu nanoparticles for methanol synthesis from CO2 hydrogenation. ChemCatChem, 9(19), 3772–3778.
Zachopoulos, A., & Heracleous, E. (2017). Overcoming the equilibrium barriers of CO2 hydrogenation to methanol via water sorption: A thermodynamic analysis. Journal of CO2 Utilization, 21, 360–367.
Wang, J., Li, G., Li, Z., Tang, C., Feng, Z., An, H., et al. (2017). A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Science Advances, 3(10), e1701290.
Sempuga, B. C., & Yao, Y. (2017). CO2 hydrogenation from a process synthesis perspective: Setting up process targets. Journal of CO2 Utilization, 20, 34–42.
Rui, N., Wang, Z., Sun, K., Ye, J., Ge, Q., & Liu, C. J. (2017). CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy. Applied Catalysis B: Environmental, 218, 488–497.
Makertiharta, I. G. B. N., Dharmawijaya, P. T., & Wenten, I. G. (2017, January). Current progress on zeolite membrane reactor for CO2 hydrogenation. In AIP Conference Proceedings (Vol. 1788, No. 1). AIP Publishing.
Li, F., Zhan, H., Zhao, N., & Xiao, F. (2017). CO2 hydrogenation to methanol over La-Mn-Cu-Zn-O based catalysts derived from perovskite precursors. International Journal of Hydrogen Energy, 42(32), 20649–20657.
Le-Phuc, N., Van Tran, T., Thuy, P. N., Nguyen, L. H., & Trinh, T. T. (2018). Correlation between the porosity of γ-Al2O3 and the performance of CuO-ZnO-Al2O3 catalysts for CO2 hydrogenation into methanol. Reaction Kinetics, Mechanisms and Catalysis, 124(1), 171–185.
Kommoß, B., Klemenz, S., Schmitt, F., Hocke, E., Vogel, K., Drochner, A., et al. (2017). Heterogeneously catalyzed hydrogenation of supercritical CO2 to methanol. Chemical Engineering & Technology, 40(10), 1907–1915.
Huš, M., Kopač, D., Štefančič, N. S., Jurković, D. L., Dasireddy, V. D., & Likozar, B. (2017). Unravelling the mechanisms of CO2 hydrogenation to methanol on Cu-based catalysts using first-principles multiscale modelling and experiments. Catalysis Science & Technology, 7(24), 5900–5913.
Huš, M., Dasireddy, V. D., Štefančič, N. S., & Likozar, B. (2017). Mechanism, kinetics and thermodynamics of carbon dioxide hydrogenation to methanol on Cu/ZnAl2O4 spinel-type heterogeneous catalysts. Applied Catalysis B: Environmental, 207, 267–278.
Huang, C., Mao, D., Guo, X., & Yu, J. (2017). Microwave‐Assisted Hydrothermal Synthesis of CuO-ZnO-ZrO2 as Catalyst for Direct Synthesis of Methanol by Carbon Dioxide Hydrogenation. Energy Technology, 5(11), 2100–2107.
Gesmanee, S., & Koo-Amornpattana, W. (2017). Catalytic hydrogenation of CO2 for methanol production in fixed-bed reactor using Cu-Zn supported on gamma-Al2O3. Energy Procedia, 138, 739–744.
Everett, M., & Wass, D. F. (2017). Highly productive CO2 hydrogenation to methanol–a tandem catalytic approach via amide intermediates. Chemical Communications, 53(68), 9502–9504.
Díez-Ramírez, J., Díaz, J. A., Sánchez, P., & Dorado, F. (2017). Optimization of the Pd/Cu ratio in Pd-Cu-Zn/SiC catalysts for the CO2 hydrogenation to methanol at atmospheric pressure. Journal of CO2 Utilization, 22, 71–80.
Deerattrakul, V., Puengampholsrisook, P., Limphirat, W., & Kongkachuichay, P. (2018). Characterization of supported Cu-Zn/graphene aerogel catalyst for direct CO2 hydrogenation to methanol: Effect of hydrothermal temperature on graphene aerogel synthesis. Catalysis Today, 314, 154–163.
Collodi, G., Azzaro, G., Ferrari, N., & Santos, S. (2017). Demonstrating large scale industrial CCS through CCU–a case study for methanol production. Energy Procedia, 114, 122–138.
Choi, E. J., Lee, Y. H., Lee, D. W., Moon, D. J., & Lee, K. Y. (2017). Hydrogenation of CO2 to methanol over Pd-Cu/CeO2 catalysts. Molecular Catalysis, 434, 146–153.
Bellotti, D., Rivarolo, M., Magistri, L., & Massardo, A. F. (2017). Feasibility study of methanol production plant from hydrogen and captured carbon dioxide. Journal of CO2 Utilization, 21, 132–138.
Abdelaziz, O. Y., Hosny, W. M., Gadalla, M. A., Ashour, F. H., Ashour, I. A., & Hulteberg, C. P. (2017). Novel process technologies for conversion of carbon dioxide from industrial flue gas streams into methanol. Journal of CO2 Utilization, 21, 52–63.
Yu, Y. (2016). Cu-ZnO-Al2O3 catalyst modify with light rare earth elements for CO2 hydrogenation to methanol. Shiyou Huagong/Petrochemical Technology, 45(1), 24–30.
Ye, J., & Johnson, J. K. (2016). Catalytic hydrogenation of CO2 to methanol in a Lewis pair functionalized MOF. Catalysis Science & Technology, 6(24), 8392–8405.
Wiesberg, I. L., de Medeiros, J. L., Alves, R. M., Coutinho, P. L., & Araújo, O. Q. (2016). Carbon dioxide management by chemical conversion to methanol: HYDROGENATION and BI-REFORMING. Energy Conversion and Management, 125, 320–335.
Spire. (2016). MefCO2, methanol fuel from CO2. (accessed 17 August 2019).
Rungtaweevoranit, B., Baek, J., Araujo, J. R., Archanjo, B. S., Choi, K. M., Yaghi, O. M., et al. (2016). Copper nanocrystals encapsulated in Zr-based metal–organic frameworks for highly selective CO2 hydrogenation to methanol. Nano Letters, 16(12), 7645–7649.
Rivera-Tinoco, R., Farran, M., Bouallou, C., Auprêtre, F., Valentin, S., Millet, P., et al. (2016). Investigation of power-to-methanol processes coupling electrolytic hydrogen production and catalytic CO2 reduction. International Journal of Hydrogen Energy, 41(8), 4546–4559.
Rivarolo, M., Bellotti, D., Magistri, L., & Massardo, A. F. (2016). Feasibility study of methanol production from different renewable sources and thermo-economic analysis. International Journal of Hydrogen Energy, 41(4), 2105–2116.
Pérez-Fortes, M., Schöneberger, J. C., Boulamanti, A., & Tzimas, E. (2016). Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment. Applied Energy, 161, 718–732.
Martin, O., Martín, A. J., Mondelli, C., Mitchell, S., Segawa, T. F., Hauert, R., et al. (2016). Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angewandte Chemie, 128(21), 6369–6373.
Marcellin, E., Behrendorff, J. B., Nagaraju, S., DeTissera, S., Segovia, S., & Palfreyman, R. W. (2016). Low carbon fuels and commodity chemicals from waste gases–systematic approach to understand energy metabolism in a model acetogen. Green Chemistry, 18(10), 3020–3028.
Kiss, A. A., Pragt, J. J., Vos, H. J., Bargeman, G., & De Groot, M. T. (2016). Novel efficient process for methanol synthesis by CO2 hydrogenation. Chemical Engineering Journal, 284, 260–269.
Hartadi, Y., Widmann, D., & Behm, R. J. (2016). Methanol synthesis via CO2 hydrogenation over a Au/ZnO catalyst: an isotope labelling study on the role of CO in the reaction process. Physical Chemistry Chemical Physics, 18(16), 10781–10791.
Díez-Ramírez, J., Valverde, J. L., Sánchez, P., & Dorado, F. (2016). CO2 hydrogenation to methanol at atmospheric pressure: influence of the preparation method of Pd/ZnO catalysts. Catalysis Letters, 146, 373–382.
Ben, S., Yuan, F., & Zhu, Y. (2016). Effect of Zr addition on catalytic performance of Cu-Zn-Al oxides for CO2 hydrogenation to methanol. Chemical Research in Chinese Universities, 32(6), 1005–1009.
Olah, G. A., & Prakash, G. K. S. (2009). Efficient and selective conversion of carbon dioxide to methanol, dimethyl ether and derived products (Patent No. US7605293). U.S. Patent and Trade Mark Office.
Shulenberger, A. M., Jonsson, F. R., Ingolfsson, O., & Tran, K.-C. (2012). Process for producing liquid fuel from carbon dioxide and water (Patent No. US8198338). U.S. Patent and Trade Mark Office.
Singh, S., Sigurbjornsson, O. F., & Tran, K.-C. (2013) Process and system for producing liquid fuel from carbon dioxide and water (Patent No. US8506910). U.S. Patent and Trade Mark Office.
Zaromb, S. (2013). Apparatus and methods for carbon dioxide capture and conversion (Patent No. US8413420). U.S. Patent and Trade Mark Office.
Sigurbjornsson, O. F., Singh, S., & Eythorsson, D. (2014). System and process to capture industrial emissions and recycle for the production of chemicals (Patent No. WO2014087433). WIPO.
Simmons, W. W., White, S. P., & Perkins, C. (2017). Various methods and apparatuses for multi-stage synthesis gas generation (Patent No. US9663363). U.S. Patent and Trade Mark Office.
Bowker, M., & Hayward, J. (2018). Catalyst suitable for methanol synthesis (Patent No. WO2018138512). WIPO.
Li, X., Xu, Y., Ru, J., Yang, K., & Zhang, T. (2022). Comprehensive treatment device for carbon dioxide generated by waste incineration (Patent No. CN218154221). China National Intellectual Property Administration.
Wix, C., & Stummann, T. D. (2022). Conversion of carbon dioxide and water to synthesis gas for producing methanol and hydrocarbon products (Patent Application No. CA3203055). Canadian Intellectual Property Office.
Rohendi, D., Sya’baniah, N. F., Majlan, E. H., Syarif, N., Rachmat, A., Yulianti, D. H., et al. (2023). The electrochemical conversion of CO2 into methanol with khco3 electrolyte using membrane electrode assembly (mea). Science and Technology Indonesia, 8(4), 632–639.
Xu, D., Sullivan, I., Xiang, C., & Lin, M. (2022). Comparative Study on Electrochemical and Thermochemical Pathways for Carbonaceous Fuel Generation Using Sunlight and Air. ACS Sustainable Chemistry & Engineering, 10(42), 13945–13954.
Wang, Y., Zheng, M., Wang, X., & Zhou, X. (2022). Electrocatalytic Reduction of CO2 to C1 Compounds by Zn-Based Monatomic Alloys: A DFT Calculation. Catalysts, 12(12), 1617.
Li, P., Gong, S., Li, C., & Liu, Z. (2022). Analysis of routes for electrochemical conversion of CO2 to methanol. Clean Energy, 6(1), 202–210.
Liu, H., Syama, L., Zhang, L., Lee, C., Liu, C., Dai, Z., et al. (2021). High‐entropy alloys and compounds for electrocatalytic energy conversion applications. SusMat, 1(4), 482–505.
de Brito, J. F., Irikura, K., Terzi, C. M., Nakagaki, S., & Zanoni, M. V. B. (2020). The great performance of TiO2 nanotubes electrodes modified by copper (II) porphyrin in the reduction of carbon dioxide to alcohol. Journal of CO2 Utilization, 41, 101261.
Zhang, Q., Du, J., He, A., Liu, Z., & Tao, C. (2019). High-selectivity electrochemical conversion of CO2 to lower alcohols using a multi-active sites catalyst of transition-metal oxides. Journal of CO2 Utilization, 34, 635–645.
Wu, J., Shi, Q., & Mu, S. (2019). Synthesis of aniline copolymer and as an active catalyst layer for electrochemical reduction of carbon dioxide in water free of supporting electrolytes. Synthetic Metals, 255, 116109.
Smith, W. A., Burdyny, T., Vermaas, D. A., & Geerlings, H. (2019). Pathways to industrial-scale fuel out of thin air from CO2 electrolysis. Joule, 3(8), 1822–1834.
Bargiacchi, E., Antonelli, M., & Desideri, U. (2019). A comparative assessment of Power-to-Fuel production pathways. Energy, 183, 1253–1265.
Zhang, W., Hu, Y., Ma, L., Zhu, G., Wang, Y., Xue, X., et al. (2018). Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Advanced Science, 5(1), 1700275.
Weekes, D. M., Salvatore, D. A., Reyes, A., Huang, A., & Berlinguette, C. P. (2018). Electrolytic CO2 reduction in a flow cell. Accounts of Chemical Research, 51(4), 910–918.
Tayyebi, E., Hussain, J., Abghoui, Y., & Skúlason, E. (2018). Trends of electrochemical CO2 reduction reaction on transition metal oxide catalysts. The Journal of Physical Chemistry C, 122(18), 10078–10087.
Li, Y. C., Yan, Z., Hitt, J., Wycisk, R., Pintauro, P. N., & Mallouk, T. E. (2018). Bipolar membranes inhibit product crossover in CO2 electrolysis cells. Advanced Sustainable Systems, 2(4), 1700187.
Gutiérrez-Guerra, N., González, J. A., Serrano-Ruiz, J. C., López-Fernández, E., Valverde, J. L., & de Lucas-Consuegra, A. (2019). Gas-phase electrocatalytic conversion of CO2 to chemicals on sputtered Cu and Cu-C catalysts electrodes. Journal of Energy Chemistry, 31, 46–53.
de Lucas-Consuegra, A., Serrano-Ruiz, J. C., Gutiérrez-Guerra, N., & Valverde, J. L. (2018). Low-temperature electrocatalytic conversion of CO2 to liquid fuels: effect of the Cu particle size. Catalysts, 8(8), 340.
Chen, C., Kotyk, J. F. K., & Sheehan, S. W. (2018). Progress toward commercial application of electrochemical carbon dioxide reduction. Chem, 4(11), 2571–2586.
Zhu, G., Li, Y., Zhu, H., Su, H., Chan, S. H., & Sun, Q. (2017). Enhanced CO2 electroreduction on armchair graphene nanoribbons edge-decorated with copper. Nano Research, 10, 1641–1650.
Ngo, K. T., McKinnon, M., Mahanti, B., Narayanan, R., Grills, D. C., Ertem, M. Z., et al. (2017). Turning on the protonation-first pathway for electrocatalytic CO2 reduction by manganese bipyridyl tricarbonyl complexes. Journal of the American Chemical Society, 139(7), 2604–2618.
Marepally, B. C., Ampelli, C., Genovese, C., Tavella, F., Veyre, L., Quadrelli, E. A., et al. (2017). Role of small Cu nanoparticles in the behaviour of nanocarbon-based electrodes for the electrocatalytic reduction of CO2. Journal of CO2 Utilization, 21, 534–542.
Li, X., Zeng, Z., Hu, B., Qian, L., & Hong, X. (2017). Surface‐Atom Dependence of ZnO‐Supported Ag@Pd Core@Shell Nanocatalysts in CO2 Hydrogenation to CH3OH. ChemCatChem, 9(6), 924–928.
Hatsukade, T., Kuhl, K. P., Cave, E. R., Abram, D. N., Feaster, J. T., Jongerius, A. L., et al. (2017). Carbon dioxide electroreduction using a silver–zinc alloy. Energy Technology, 5(6), 955–961.
Cave, E. R., Montoya, J. H., Kuhl, K. P., Abram, D. N., Hatsukade, T., Shi, C., et al. (2017). Electrochemical CO2 reduction on Au surfaces: mechanistic aspects regarding the formation of major and minor products. Physical Chemistry Chemical Physics, 19(24), 15856–15863.
Schlager, S., Dumitru, L. M., Haberbauer, M., Fuchsbauer, A., Neugebauer, H., Hiemetsberger, D., et al. (2016). Electrochemical reduction of carbon dioxide to methanol by direct injection of electrons into immobilized enzymes on a modified electrode. ChemSusChem, 9(6), 631–635.
Jovanov, Z. P., Hansen, H. A., Varela, A. S., Malacrida, P., Peterson, A. A., Nørskov, J. K., et al. (2016). Opportunities and challenges in the electrocatalysis of CO2 and CO reduction using bifunctional surfaces: A theoretical and experimental study of Au-Cd alloys. Journal of Catalysis, 343, 215–231.
Gutiérrez-Guerra, N., Moreno-López, L., Serrano-Ruiz, J. C., Valverde, J. L., & de Lucas-Consuegra, A. (2016). Gas phase electrocatalytic conversion of CO2 to syn-fuels on Cu based catalysts-electrodes. Applied Catalysis B: Environmental, 188, 272–282.
Díez-Ramírez, J., Sánchez, P., Valverde, J. L., & Dorado, F. (2016). Electrochemical promotion and characterization of PdZn alloy catalysts with K and Na ionic conductors for pure gaseous CO2 hydrogenation. Journal of CO2 Utilization, 16, 375–383.
Albo, J., & Irabien, A. (2016). Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol. Journal of Catalysis, 343, 232–239.
Karamad, M., Hansen, H. A., Rossmeisl, J., & Nørskov, J. K. (2015). Mechanistic pathway in the electrochemical reduction of CO2 on RuO2. ACS Catalysis, 5(7), 4075–4081.
Kuhl, K. P., Hatsukade, T., Cave, E. R., Abram, D. N., Kibsgaard, J., & Jaramillo, T. F. (2014). Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. Journal of the American Chemical Society, 136(40), 14107–14113.
Hatsukade, T., Kuhl, K. P., Cave, E. R., Abram, D. N., & Jaramillo, T. F. (2014). Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces. Physical Chemistry Chemical Physics, 16(27), 13814–13819.
Ampelli, C., Genovesea, C., Perathonera, S., Centia, G., Errahalib, M., Gattib, G., et al. (2014). An electrochemical reactor for the CO2 reduction in gas phase by using conductive polymer based electrocatalysts. Chemical Engineering, 41, 13–18.
Al-Rowaili, F. N., Khaled, M., Jamal, A., Onaizi, S. A., & Zahid, U. (2022). Electrochemical reduction of carbon dioxide (Patent No. US11512400). U.S. Patent and Trade Mark Office.
Hou, C., Lv, H., Ding, L. A., Zhang, K., & Zhang, X. (2022). Peak regulation power generation system and method coupled with carbon dioxide capture and utilization (Patent No. CN114899884). China National Intellectual Property Administration.
Roustaei, A. H., & Djemai, A. (2010). System for production, conversion and reproduction of gas-liquid-gas hydrogen cycle with absorption of carbon dioxide, comprises water electrolyzer device with electrolysis chamber, electrodes and electrolyte, and gas transformation device (Patent No. FR2939450). French Patent and Trademark Office (INPI).
Kumar, P., Srivastava, V. C., Gläser, R., With, P., & Mishra, I. M. (2017). Active ceria-calcium oxide catalysts for dimethyl carbonate synthesis by conversion of CO2. Powder Technology, 309, 13–21.
Zhao, S. Y., Wang, S. P., Zhao, Y. J., & Ma, X. B. (2017). An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over well-shaped CeO2. Chinese Chemical Letters, 28(1), 65–69.
Jung, K. T., & Bell, A. T. (2001). An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over zirconia. Journal of Catalysis, 204(2), 339–347.
Marciniak, A. A., Henrique, F. J., de Lima, A. F., Alves, O. C., Moreira, C. R., Appel, L. G., et al. (2020). What are the preferred CeO2 exposed planes for the synthesis of dimethyl carbonate? Answers from theory and experiments. Molecular Catalysis, 493, 111053.
Tamboli, A. H., Chaugule, A. A., Gosavi, S. W., & Kim, H. (2018). CexZr1-xO2 solid solutions for catalytic synthesis of dimethyl carbonate from CO2: Reaction mechanism and the effect of catalyst morphology on catalytic activity. Fuel, 216, 245–254.
Wang, X., Zhao, J., Li, Y., Huang, S., An, J., Shi, R., et al. (2021). Effects of surface acid-base properties of ZrO2 on the direct synthesis of DMC from CO2 and methanol: A combined DFT and experimental study. Chemical Engineering Science, 229, 116018.
Yang, G., Jia, A., Li, J., Li, F., & Wang, Y. (2022). Investigation of synthesis parameters to fabricate CeO2 with a large surface and high oxygen vacancies for dramatically enhanced performance of direct DMC synthesis from CO2 and methanol. Molecular Catalysis, 528, 112471.
Tamboli, A. H., Chaugule, A. A., & Kim, H. (2017). Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol. Chemical Engineering Journal, 323, 530–544.
Daniel, C., Schuurman, Y., & Farrusseng, D. (2021). Surface effect of nano-sized cerium-zirconium oxides for the catalytic conversion of methanol and CO2 into dimethyl carbonate. Journal of Catalysis, 394, 486–494.
Santos, B. A., Silva, V. M., Loureiro, J. M., & Rodrigues, A. E. (2014). Review for the direct synthesis of dimethyl carbonate. ChemBioEng Reviews, 1(5), 214–229.
Stoian, D. C., Taboada, E., Llorca, J., Molins, E., Medina, F., & Segarra, A. M. (2013). Boosted CO2 reaction with methanol to yield dimethyl carbonate over Mg–Al hydrotalcite-silica lyogels. Chemical Communications, 49(48), 5489–5491.
Sakakura, T., Choi, J. C., Saito, Y., Masuda, T., Sako, T., & Oriyama, T. (1999). Metal-catalyzed dimethyl carbonate synthesis from carbon dioxide and acetals. The Journal of Organic Chemistry, 64(12), 4506–4508.
Li, X., Han, S. G., Wu, W., Zhang, K., Chen, B., Zhou, S., et al. (2023). Convergent paired electrosynthesis of dimethyl carbonate from carbon dioxide enabled by designing the superstructure of axial oxygen coordinated nickel single-atom catalysts. Energy & Environmental Science, 16(2), 502–512.
Lui, Y. W., Chan, B., & Lui, M. Y. (2022). Methylation with dimethyl carbonate/dimethyl sulfide mixtures: An integrated process without addition of acid/base and formation of residual salts. ChemSusChem, 15(3), e202102538.
Zhang, L., Niu, D., Zhang, K., Zhang, G., Luo, Y., & Lu, J. (2008). Electrochemical activation of CO2 in ionic liquid (BMIMBF 4): synthesis of organic carbonates under mild conditions. Green Chemistry, 10(2), 202–206.
Tundo, P., & Perosa, A. (2002). Green organic syntheses: organic carbonates as methylating agents. The Chemical Record, 2(1), 13–23.
Aresta, M., & Quaranta, E. (1997). Carbon dioxide: a substitute for phosgene. Chemtech, 27(3).
Darensbourg, D. J., & Holtcamp, M. W. (1996). Catalysts for the reactions of epoxides and carbon dioxide. Coordination Chemistry Reviews, 153, 155–174.
Delledonne, D., Rivetti, F., & Romano, U. (2001). Developments in the production and application of dimethylcarbonate. Applied Catalysis A: General, 221(1–2), 241–251.
Elmas, S., Subhani, M. A., Leitner, W., & Müller, T. E. (2015). Anion effect controlling the selectivity in the zinc-catalysed copolymerisation of CO2 and cyclohexene oxide. Beilstein Journal of Organic Chemistry, 11(1), 42–49.
Fukuoka, S., Kawamura, M., Komiya, K., Tojo, M., Hachiya, H., Hasegawa, K., et al. (2003). A novel non-phosgene polycarbonate production process using by-product CO2 as starting material. Green Chemistry, 5(5), 497–507.
Pedersen, T. H., & Conti, F. (2017). Improving the circular economy via hydrothermal processing of high-density waste plastics. Waste Management, 68, 24–31.
Liu, T., Wang, G., & Yang, X. (2022). Controlled synthesis of aliphatic polycarbonate diols using dimethyl carbonate and various diols. Journal of the Chinese Chemical Society, 69(6), 995–1001.
Fang, W., Zhang, Y., Yang, Z., Zhang, Z., Xu, F., Wang, W., et al. (2021). Efficient activation of dimethyl carbonate to synthesize bio-based polycarbonate by eco-friendly amino acid ionic liquid catalyst. Applied Catalysis A: General, 617, 118111.
Gómez-de-Miranda-Jiménez-de-Aberasturi, O., Centeno-Pedrazo, A., Prieto Fernández, S., Rodriguez Alonso, R., Medel, S., María Cuevas, J., et al. (2021). The future of isosorbide as a fundamental constituent for polycarbonates and polyurethanes. Green Chemistry Letters and Reviews, 14(3), 534–544.
Yang, Z., Liu, L., An, H., Li, C., Zhang, Z., Fang, W., et al. (2020). Cost-effective synthesis of high molecular weight biobased polycarbonate via melt polymerization of isosorbide and dimethyl carbonate. ACS Sustainable Chemistry & Engineering, 8(27), 9968–9979.
Fukuoka, S., Fukawa, I., Adachi, T., Fujita, H., Sugiyama, N., & Sawa, T. (2019). Industrialization and expansion of green sustainable chemical process: a review of non-phosgene polycarbonate from CO2. Organic Process Research & Development, 23(2), 145–169.
Sun, J., Aly, K. I., & Kuckling, D. (2017). A novel one-pot process for the preparation of linear and hyperbranched polycarbonates of various diols and triols using dimethyl carbonate. RSC Advances, 7(21), 12550–12560.
Sun, J., & Kuckling, D. (2016). Synthesis of high-molecular-weight aliphatic polycarbonates by organo-catalysis. Polymer Chemistry, 7(8), 1642–1649.
Bigot, S., Kebir, N., Plasseraud, L., & Burel, F. (2015). Organocatalytic synthesis of new telechelic polycarbonates and study of their chemical reactivity. Polymer, 66, 127–134.
Park, J. H., Jeon, J. Y., Lee, J. J., Jang, Y., Varghese, J. K., & Lee, B. Y. (2013). Preparation of high-molecular-weight aliphatic polycarbonates by condensation polymerization of diols and dimethyl carbonate. Macromolecules, 46(9), 3301–3308.
Naik, P. U., Refes, K., Sadaka, F., Brachais, C. H., Boni, G., Couvercelle, J. P., et al. (2012). Organo-catalyzed synthesis of aliphatic polycarbonates in solvent-free conditions. Polymer Chemistry, 3(6), 1475–1480.
Fukuoka, S., Fukawa, I., Tojo, M., Oonishi, K., Hachiya, H., Aminaka, M., et al. (2010). A novel non-phosgene process for polycarbonate production from CO2: green and sustainable chemistry in practice. Catalysis Surveys from Asia, 14, 146–163.
Kim, W. B., Joshi, U. A., & Lee, J. S. (2004). Making polycarbonates without employing phosgene: An overview on catalytic chemistry of intermediate and precursor syntheses for polycarbonate. Industrial & Engineering Chemistry Research, 43(9), 1897–1914.
Rodney, R. L., Stagno, J. L., Beckman, E. J., & Russell, A. J. (1999). Enzymatic synthesis of carbonate monomers and polycarbonates. Biotechnology and Bioengineering, 62(3), 259–266.<259::AID-BIT2>3.0.CO;2-I
Riduan, S. N., & Zhang, Y. (2010). Recent developments in carbon dioxide utilization under mild conditions. Dalton Transactions, 39(14), 3347–3357.
Aresta, M., Quaranta, E., Dibenedetto, A., Tommasi, I., & Marciniec, B. (2000). CO2‐catalysed carbamation of aminofunctional silanes. Applied Organometallic Chemistry, 14(12), 871–873.<871::AID-AOC93>3.0.CO;2-H
Castillo, A. C., & Angelis-Dimakis, A. (2019). Analysis and recommendations for European carbon dioxide utilization policies. Journal of Environmental Management, 247, 439–448.
Langanke, J., Wolf, A., Hofmann, J., Böhm, K., Subhani, M. A., Müller, T. E., et al. (2014). Carbon dioxide (CO2) as sustainable feedstock for polyurethane production. Green Chemistry, 16(4), 1865–1870.
Tundo, P., Aricò, F., & McElroy, C. R. (2011). The greening of chemistry. In The Chemical Element (pp. 189–234). John Wiley & Sons.
Tundo, P., McElroy, C. R., & Aricò, F. (2010). Synthesis of carbamates from amines and dialkyl carbonates: influence of leaving and entering groups. Synlett, 2010(10), 1567–1571.
Yadav, N., Seidi, F., Crespy, D., & D’Elia, V. (2019). Polymers based on cyclic carbonates as trait d’union between polymer chemistry and sustainable CO2 utilization. ChemSusChem, 12(4), 724–754.
Ostapowicz, T. G., Schmitz, M., Krystof, M., Klankermayer, J., & Leitner, W. (2013). Carbon dioxide as a C1 building block for the formation of carboxylic acids by formal catalytic hydrocarboxylation. Angewandte Chemie, 125(46), 12341–12345.
Leitner, W., Franciò, G., Scott, M., Westhues, C., Langanke, J., Lansing, M., et al. (2018). Carbon2Polymer–Chemical Utilization of CO2 in the Production of Isocyanates. Chemie Ingenieur Technik, 90(10), 1504–1512.
Suh, H. S., Ha, J. Y., Yoon, J. H., Ha, C. S., Suh, H., & Kim, I. (2010). Polyester polyol synthesis by alternating copolymerization of propylene oxide with cyclic acid anhydrides by using double metal cyanide catalyst. Reactive and Functional Polymers, 70(5), 288–293.
Lackner, K. S., Wendt, C. H., Butt, D. P., Joyce, E. L., Jr, & Sharp, D. H. (1995). Carbon dioxide disposal in carbonate minerals. Energy, 20(11), 1153–1170.
Doucet, F. J. (2001). Scoping study on CO2 mineralization technologies (CGS-2011-007 Report). CGS. (accessed 11 January 2020).
Chen, Z. Y., O’Connor, W. K., & Gerdemann, S. J. (2006). Chemistry of aqueous mineral carbonation for carbon sequestration and explanation of experimental results. Environmental Progress, 25(2), 161–166.
Gerdemann, S. J., O’Connor, W. K., Dahlin, D. C., Penner, L. R., & Rush, H. (2007). Ex situ aqueous mineral carbonation. Environmental Science & Technology, 41(7), 2587–2593.
Bao, W., Li, H., & Zhang, Y. (2007). Progress in carbon dioxide sequestration by mineral carbonation. CIESC Journal, 58(1), 1–9.
Delgado Torróntegui, M. (2010). Assessing the mineral carbonation science and technology [Master’s Thesis]. ETH Zurich.
Priestnall, M. (2010). CO2 mineralisation via fuel cells. How to make CCS profitable. In Proceedings of Finding Petroleum CCS Forum. Geological Society. (accessed 27 February 2020).
Zimmermann, A., Styles, M. T., Lacinska, A. M., Zemskova, S., Sanna, A., Hall, M., et al. (2011). Carbon Capture and Storage by Mineralisation Stage Gate 1 Report. Energy Technologies Institute.
Priestnall, M. (28 November 2012). Silica, metals, Mg/ca oxides, CCS (& electricity) from minerals & wastes. The Mineralisation Cluster Workshop, London, UK.
Zevenhoven, R., Fagerlund, J., Björklöf, T., Mäkelä, M., & Eklund, O. (26–29 June 2012). Carbon dioxide mineralisation and integration with flue gas desulphurisation applied to a modern coal-fired power plant. ECOS2012, Perugia, Italy.
Priestnall, M. (3 February 2013). Making money from mineralisation of CO2. Carbon Capture Journal. (accessed 27 February 2020).
Santos, R. M., François, D., Mertens, G., Elsen, J., & Van Gerven, T. (2013). Ultrasound-intensified mineral carbonation. Applied Thermal Engineering, 57(1–2), 154–163.
Santos, R. M., Verbeeck, W., Knops, P., Rijnsburger, K., Pontikes, Y., & Van Gerven, T. (2013). Integrated mineral carbonation reactor technology for sustainable carbon dioxide sequestration:‘CO2 Energy Reactor’. Energy Procedia, 37, 5884–5891.
Zevenhoven, R., Romão, I., & Slotte, M. (5–7 November 2013). Mineralisation of CO₂ using serpentinite rock - towards industrial application. IEAGHG/IETS Iron & Steel Industry CCUS & Process Integration Workshop, Tokyo, Japan. (accessed 27 February 2020).
Zevenhoven, R., Fagerlund, J., Nduagu, E., Romão, I., Jie, B., & Highfield, J. (2013). Carbon storage by mineralisation (CSM): Serpentinite rock carbonation via Mg(OH)2 reaction intermediate without CO2 pre-separation. Energy Procedia, 37, 5945–5954.
Hemmati, A., Shayegan, J., Bu, J., Yeo, T. Y., & Sharratt, P. (2014). Process optimization for mineral carbonation in aqueous phase. International Journal of Mineral Processing, 130, 20–27.
Priestnall, M. (2014). Decarbonising flue gas using CO2 mineralisation – project experience on ships. Keeping the Momentum, Geological Society, London, UK.
Sanna, A., Uibu, M., Caramanna, G., Kuusik, R., & Maroto-Valer, M. M. (2014). A review of mineral carbonation technologies to sequester CO2. Chemical Society Reviews, 43(23), 8049–8080.
Priestnall, M. (2014). Can mineral carbonation be used for industrial carbon dioxide sequestration? Environmental Chemistry Group Buletin. (accessed 27 Februaty 2020).
Priestnall, M. (2015). Method and system of sequestrating carbon dioxide (Patent No. GB2515995). UK Patent and Trademark Office.
Romanov, V., Soong, Y., Carney, C., Rush, G. E., Nielsen, B., & O’Connor, W. (2015). Mineralization of carbon dioxide: a literature review. ChemBioEng Reviews, 2(4), 231–256.
Romão, I. S. S. (2015). Production of magnesium carbonates from serpentinites for CO2 mineral sequestration- optimisation towards industrial application [Doctoral Dissertation]. Universidade de Coimbra.
Zevenhoven, R., Romão, I., & Slotte, M. (2015). Mineralization of CO₂ using serpentinite rock - towards industrial application. In C. Ludwig, C. Matasci, & X. Edelmann (Eds.), Natural resources: Sustainable targets, technologies, lifestyles and governance (pp. 125–129). World Resources Forum. (accessed 27 February 2020).
Zevenhoven, R., Slotte, M., Åbacka, J., & Highfield, J. (2016). A comparison of CO2 mineral sequestration processes involving a dry or wet carbonation step. Energy, 117, 604–611.
Benhelal, E., Rashid, M. I., Rayson, M. S., Brent, G. F., Oliver, T., Stockenhuber, M., et al. (2019). Direct aqueous carbonation of heat activated serpentine: discovery of undesirable side reactions reducing process efficiency. Applied Energy, 242, 1369–1382.
Zevenhoven, R. (2020). Metals production, CO2 mineralization and LCA. Metals, 10(3), 342.
Wang, B., Pan, Z., Cheng, H., Zhang, Z., & Cheng, F. (2021). A review of carbon dioxide sequestration by mineral carbonation of industrial byproduct gypsum. Journal of Cleaner Production, 302, 126930.
Britten, R. (2011). System for halting the increase in atmospheric carbon dioxide and method of operation thereof (Patent No. US2011171107). U.S. Patent and Trademark Office.
Jones, J. D., & St Angelo, D. (2015). Removing carbon dioxide from waste streams through co-generation of carbonate and/or bicarbonate minerals (Patent No. US9205375). U.S. Patent and Trademark Office.
Priestnall, M. (2018). Method and system of activation of mineral silicate minerals (Patent No. US9963351). U.S. Patent and Trademark Office.
Sano, K., Saito, H., Miyamoto, H., & Imada, T. (2022). Carbon dioxide fixation method and carbon dioxide fixation system (Patent Application No. US2022297058). U.S. Patent and Trademark Office.
Sano, K., Saito, H., Miyamoto, H., & Suzuki, A. (2023). Carbon dioxide fixation system and method using seawater electrolysis (Patent Application No. US2023051291). U.S. Patent and Trademark Office.
Manaka, Y., Nagatsuka, Y., & Motokura, K. (2020). Organic bases catalyze the synthesis of urea from ammonium salts derived from recovered environmental ammonia. Scientific Reports, 10(1), 2834.
Meessen, J. (2014). Urea synthesis. Chemie Ingenieur Technik, 86(12), 2180–2189.
Nguyen, D. S., Cho, J. K., Shin, S. H., Mishra, D. K., & Kim, Y. J. (2016). Reusable polystyrene-functionalized basic ionic liquids as catalysts for carboxylation of amines to disubstituted ureas. ACS Sustainable Chemistry & Engineering, 4(2), 451–460.
Pérez-Fortes, M., Bocin-Dumitriu, A., & Tzimas, E. (2014). CO2 utilization pathways: techno-economic assessment and market opportunities. Energy Procedia, 63, 7968–7975.
Quaranta, E., & Aresta, M. (2010). The chemistry of N-CO2 bonds: synthesis of carbamic acids and their derivatives, isocyanates, and ureas. In Carbon dioxide as chemical feedstock (pp. 121–167). Wiley-VCH.
Shi, H., Du, J., Hou, J., Ni, W., Song, C., Li, K., et al. (2020). Solar-driven CO2 conversion over Co2+ doped 0D/2D TiO2/g-C3N4 heterostructure: Insights into the role of Co2+ and cocatalyst. Journal of CO2 Utilization, 38, 16–23.
Cheng, K., & Cheng, W. (2018). Tripolycyanamide whole circulation production process and device (Patent No. CN108558783). China National Intellectual Property Administration.
Lee, J. M. (1995). Process for manufacturing melamine from urea (Patent No. US5384404). U.S. Patent and Trademark Office.
Li, D. (2014). One-step method used for production of melamine by circulating ammonia gas as carrying gas (Patent No. CN103601693). China National Intellectual Property Administration.
Mennen, J. H. (2018). Integrated production of urea and melamine (Patent No. US9981924). U.S. Patent and Trademark Office.
Sioli, G. (2012). Process for the production of high purity melamine from urea (Patent No. US9045439). U.S. Patent and Trademark Office.
Xiao, J., Zuo, Y., Liu, W., Wu, Y., & Zhao, X. (2016). Research progress of adhesives for strawboard (in Chinese). Cailiao Daobao/Materials Review, 30(9), 78–83.
Zhao, L. F., Liu, Y., Xu, Z. D., Zhang, Y. Z., Zhao, F., & Zhang, S. B. (2011). State of research and trends in development of wood adhesives. Forestry Studies in China, 13, 321–326.
Urea-formaldehyde resins theories challenged. (1984). Chemical and Engineering News, 62(10), 25–28.
Yan, S., Li, Z., Zhou, Y., Ding, T., & Han, S. (2016). Research progress in high technologies of urea-formaldehyde resin (in Chinese). Cailiao Daobao/Materials Review, 30(2), 70–75.
Wibowo, E. S., Park, B. D., & Causin, V. (2022). Recent advances in urea–formaldehyde resins: converting crystalline thermosetting polymers back to amorphous ones. Polymer Reviews, 62(4), 722–756.
Maskew, R. (1941). Applications of Urea‐Formaldehyde Resin Glues. Aircraft Engineering and Aerospace Technology, 13(6), 171–172.
Meyer, B. (1979). Urea-formaldehyde resins. Addison-Wesley Publishing.
Marvel, C. S., Elliott, J. R., Boettner, F. E., & Yuska, H. (1946). The structure of urea-formaldehyde resins1. Journal of the American Chemical Society, 68(9), 1681–1686.
Pizzi, A., & Mittal, K. L. (2003). Urea-formaldehyde adhesives. Handbook of adhesive technology (2nd ed.). Taylor & Francis.
Rammon, R. M., Johns, W. E., Magnuson, J., & Dunker, A. K. (1986). The chemical structure of UF resins. The Journal of Adhesion, 19(2), 115–135.
Antov, P., Savov, V., Krišťák, Ľ., Réh, R., & Mantanis, G. I. (2021). Eco-friendly, high-density fiberboards bonded with urea-formaldehyde and ammonium lignosulfonate. Polymers, 13(2), 220.
River, B. H., Ebewele, R. O., & Myers, G. E. (1994). Failure mechanisms in wood joints bonded with urea-formaldehyde adhesives (in German). Holz als Roh-und Werkstoff, 52(3), 179–184.
Myers, G. E., & Koutsky, J. A. (1990). Formaldehyde liberation and cure behavior of urea-formaldehyde resins.
Myers, G. E. (1984). How mole ratio of UF resin affects formaldehyde emission and other properties: a literature critique. Forest Products Journal, 34(5), 35–41.
Lee, S. M., Park, J. Y., Park, S. B., Han, S. T., & Kang, E. C. (2012). Comparative study of the storage stability between a melamine-urea-formaldehyde and a urea-formaldehyde resin. Forest Products Journal, 62(2), 146–149.
Ebewele, R. O., Myers, G. E., River, B. H., & Koutsky, J. A. (1991). Polyamine‐modified urea‐formaldehyde resins. I. Synthesis, structure, and properties. Journal of Applied Polymer Science, 42(11), 2997–3012.
Jeong, B., Park, B. D., & Causin, V. (2019). Influence of synthesis method and melamine content of urea-melamine-formaldehyde resins to their features in cohesion, interphase, and adhesion performance. Journal of Industrial and Engineering Chemistry, 79, 87–96.
Braun, D., & Ritzert, H. J. (1987). Properties and processing behaviour of urea-melamine-formaldehyde resins. Kunststoffe. German Plastics, 77(12), 29–31.
Sokolova, E. G., Varankina, G. S., & Rusakov, D. S. (2022). Urea–Melamine Formaldehyde Resin for the Manufacture of Water-Resistant Plywood. Polymer Science, Series D, 15(4), 557–561.
Park, B. D., & Lee, S. M. (2015). Hydrolytic Stability of Cured Urea-Melamine-Formaldehyde Resins Depending on Hydrolysis Conditions and Hardener Types. Journal of the Korean Wood Science and Technology, 43(5), 672–681.
Mao, A., & Kim, M. G. (2013). Low mole ratio urea–melamine–formaldehyde resins entailing increased methylene-ether group contents and their formaldehyde emission potentials of wood composite boards. BioResources, 8(3), 4659–4675.
Park, B. D., Lee, S. M., & Roh, J. K. (2009). Effects of formaldehyde/urea mole ratio and melamine content on the hydrolytic stability of cured urea-melamine-formaldehyde resin. European Journal of Wood and Wood Products, 67, 121–123.
Shi, J. Y., & Ye, S. Y. (2010). Effects of addition ammonia modified urea-melamine-formaldehyde resin on the adhesions and formaldehyde emission in plywood. Advanced Materials Research, 113, 1226–1229.
Young No, B., & Kim, M. G. (2007). Evaluation of melamine‐modified urea‐formaldehyde resins as particleboard binders. Journal of Applied Polymer Science, 106(6), 4148–4156.
Alcasabas, A., Ellis, P. R., Malone, I., Williams, G., & Zalitis, C. (2021). A Comparison of Different Approaches to the Conversion of Carbon Dioxide into Useful Products: Part I: CO2 reduction by electrocatalytic, thermocatalytic and biological routes. Johnson Matthey Technology Review, 65(2), 180–196.
Klankermayer, J., Wesselbaum, S., Beydoun, K., & Leitner, W. (2016). Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry. Angewandte Chemie International Edition, 55(26), 7296–7343.
Chung, W., Jeong, W., Lee, J., Kim, J., Roh, K., & Lee, J. H. (2023). Electrification of CO2 conversion into chemicals and fuels: Gaps and opportunities in process systems engineering. Computers & Chemical Engineering, 170, 108106.
Ramirez-Corredores, M. M., Goldwasser, M. R., & Falabella de Sousa Aguiar, E. (2023). Perspectives and Future Views. In Decarbonization as a Route Towards Sustainable Circularity (pp. 127–153). Springer, Cham.
Carbon Recycling International (CRI). (2016). Emission to liquid (ETL) technology. (accessed 13 March 2021).
Carbon Recycling International (CRI) and HS Orka. (2011). George Olah CO2 to renewable methanol plant. (accessed 13 March 2021).
Alper, E., & Orhan, O. Y. (2017). CO2 utilization: Developments in conversion processes. Petroleum, 3(1), 109–126.
Chiang, P. C., & Pan, S. Y. (2017). Carbon dioxide mineralization and utilization (pp. 1–452). Springer Singapore.
Quadrelli, E. A., Armstrong, K., & Styring, P. (2015). Potential CO2 utilisation contributions to a more carbon-sober future: a 2050 vision. In Carbon Dioxide Utilisation (pp. 285–302). Elsevier.
Cheah, W. Y., Ling, T. C., Juan, J. C., Lee, D. J., Chang, J. S., & Show, P. L. (2016). Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production. Bioresource Technology, 215, 346–356.
North, M. (2019). Across the board: Michael North on carbon dioxide biorefinery. ChemSusChem, 12(8), 1763–1765.
Bakonyi, P., Koók, L., Rózsenberszki, T., Kalauz-Simon, V., Bélafi-Bakó, K., & Nemestóthy, N. (2023). CO2-refinery through microbial electrosynthesis (MES): A concise review on design, operation, biocatalysts and perspectives. Journal of CO2 Utilization, 67, 102348.
Ramirez-Corredores, M. M. (2017). Chapter 4 - Acidity in crude oils: naphthenic acids and naphthenates. The Science and Technology of Unconventional Oils, 295–385.
de Jong, E., & Jungmeier, G. (2015). Biorefinery concepts in comparison to petrochemical refineries. In Industrial biorefineries & white biotechnology (pp. 3–33). Elsevier.
Menegaki, A. (2008). Valuation for renewable energy: A comparative review. Renewable and Sustainable Energy Reviews, 12(9), 2422–2437.
Murphy, F., & Ronn, E. I. (2015). The valuation and information content of options on crude-oil futures contracts. Review of Derivatives Research, 18, 95–106.
IEA. (2022). CO2 emissions in 2022. (accessed 23 June 2023).
IEA. (2021). Net zero by 2050: A roadmap for the global energy sector. (accessed 23 June 2023).
Edwards, R. W., & Celia, M. A. (2018). Infrastructure to enable deployment of carbon capture, utilization, and storage in the United States. Proceedings of the National Academy of Sciences, 115(38), E8815–E8824.
Larson, E., Greig, C., Jenkins, J., Mayfield, E., Pascale, A., Zhang, C., et al. (2021). Net-zero America: Potential pathways, infrastructure, and impacts (Final Report). Princeton University. (accessed 23 June 2023).
Rueda, O., Mogollón, J. M., Tukker, A., & Scherer, L. (2021). Negative-emissions technology portfolios to meet the 1.5 °C target. Global Environmental Change, 67, 102238.
Brander, M., Ascui, F., Scott, V., & Tett, S. (2021). Carbon accounting for negative emissions technologies. Climate Policy, 21(5), 699–717.
Pacala, S., & Socolow, R. (2004). Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science, 305(5686), 968–972.
Brown, M. A., Chandler, J., Lapsa, M. V., & Sovacool, B. K. (2008). Carbon lock-in: barriers to deploying climate change mitigation technologies (Report No. ORNL/TM-2007/124). Oak Ridge National Lab (ORNL).
Ioannou, I., Javaloyes-Antón, J., Caballero, J. A., & Guillén-Gosálbez, G. (2023). Economic and Environmental Performance of an Integrated CO2 Refinery. ACS Sustainable Chemistry & Engineering, 11(5), 1949–1961.
Journal Menu
Journal Contact
Highlights of Sustainability Editorial Office
Highlights of Science
Avenida Madrid, 189-195, 3-3
08014 Barcelona, Spain
Tel. +34 93 138 23 89
Cathy Wang Managing Editor
Submit Your Article
Highlights Sustain., ISSN 2696-628X. Published quarterly by Highlights of Science.
Subscribe to read the latest articles and newsletters from Highlights of Science.