Indexing: Web of Science (ESCI), Scopus (CiteScore: 1.2)
Indexing: Web of Science (ESCI), Scopus (CiteScore: 1.2)
Evaluation of Environmental Impacts Related to Land Use Modification in the Central Apennines of Italy
1
DISTA, Università degli Studi eCampus, 22060 Novedrate, Italy
2
Struttura Commissariale Sisma 2016, 00187 Roma, Italy
3
DIISM, Università Politecnica delle Marche, 60131 Ancona, Italy
*
For correspondence.
Academic Editor:
Highlights of Sustainability, 2025, 4(4),
240–255.
https://doi.org/10.54175/hsustain4040015
Received: 18 June 2025 Accepted: 22 October 2025 Published: 29 October 2025
Abstract
Land use modification in mountain regions represents a fundamental driver of socio-ecological transformation, reflecting the continuous negotiation between natural processes and human agency. Rather than merely describing degradation or recovery, this study aims to quantify how multiple ecological dimensions interact through land use change, proposing a synthetic framework capable of operationalizing these trade-offs at the landscape scale. While there is a widespread narrative that associates land use modifications with ecological degradation, there is also a growing recognition of the positive role that human activities can play in shaping and sustaining biodiversity. Traditional practices such as transhumance pastoralism, agriculture, and agroforestry have historically contributed to a sustainable management of the territories and to the creation of mosaic landscapes that support a wide array of species and habitats. Within Mediterranean mountain systems, sustainable outcomes have in fact historically arisen from a specific subset of human-land use accommodations that maintain functional heterogeneity, such as rotational agro-pastoralism sustaining nutrient cycling and grassland renewal; terraced and mixed agroforestry systems mitigating erosion and regulating hydrology; low-intensity cropping and mosaic management maintaining edge habitats and pollinator networks. This study investigates the long-term environmental impacts of land use change in the Central Apennines (Italy) from 1950 to 2020. We develop and apply a Composite Environmental Index (ΔEI) integrating five indicators: biodiversity, carbon sequestration, water availability, fire risk, and soil degradation, to assess the ecological effects of landscape transformation. The results show that unmanaged reforestation following land abandonment has led to a net decline in environmental quality (ΔEI = −0.27), particularly in low- to mid-elevation zones, since the gain in CO2 sequestration potential due to increased forest cover outweighed by declines in biodiversity, reduced water availability, heightened fire risk, and marked soil degradation. Spatial heterogeneity is significant: while carbon storage improved, negative trends in biodiversity and ecosystem function dominate. It also outlines that passive rewilding strategies may be insufficient in historically managed landscapes in comparison with active, context-specific management aligned with Nature-based Solutions. The ΔEI framework offers a replicable model for integrated land planning and ecological restoration in Mediterranean mountain systems. Recognizing that both extractive intensification and complete abandonment disrupt the ecological equilibrium allows us to distinguish between adaptive and maladaptive pathways of landscape evolution, a key step toward generalizing lessons beyond the Apennine context.
Figures in this Article
Figure 1
Figure 2
Figure 3
Would you like to reuse the images? Contact the journal editorial office to obtain high-quality versions.
Keywords
land use change; environmental impact; composite index; rewilding; Mediterranean mountains; cultural landscapes; Nature-based Solutions
Copyright © 2025
Marchetti et al. This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use and distribution provided that the original work is properly cited.
Funding
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.
Cite this Article
Marchetti, B., Castelli, G., & Corvaro, F. (2025). Evaluation of Environmental Impacts Related to Land Use Modification in the Central Apennines of Italy. Highlights of Sustainability, 4(4), 240–255. https://doi.org/10.54175/hsustain4040015
References
1.
Navarro, L. M., & Pereira, H. M. (2012). Rewilding abandoned landscapes in Europe. Ecosystems, 15, 900–912. https://doi.org/10.1007/s10021-012-9558-7
2.
García-Ruiz, J. M., Lasanta, T., Nadal-Romero, E., Lana-Renault, N., & Álvarez-Farizo, B. (2020). Rewilding and restoring cultural landscapes in Mediterranean mountains: Opportunities and challenges. Land Use Policy, 99, 104850. https://doi.org/10.1016/j.landusepol.2020.104850
3.
Gross, M. (2014). How wild do you want to go? Current Biology, 24(22), R1067–R1070. https://doi.org/10.1016/j.cub.2014.10.066
4.
Schnitzler, A. (2014). Towards a new European wilderness? Embracing unmanaged forest growth. Landscape and Urban Planning, 126, 74–80. https://doi.org/10.1016/j.landurbplan.2014.02.011
5.
van der Zanden, E. H., Verburg, P. H., Schulp, C. J., & Verkerk, P. J. (2017). Trade-offs of European agricultural abandonment. Land Use Policy, 62, 290–301. https://doi.org/10.1016/j.landusepol.2017.01.003
6.
Queiroz, C., Beilin, R., Folke, C., & Lindborg, R. (2014). Farmland abandonment: Threat or opportunity for biodiversity conservation? A global review. Frontiers in Ecology and the Environment, 12(5), 288–296. https://doi.org/10.1890/120348
7.
Ceaușu, S., Hofmann, M., Navarro, L. M., Carver, S., Verburg, P. H., & Pereira, H. M. (2015). Mapping opportunities and challenges for rewilding in Europe. Conservation Biology, 29(4), 1017–1027. https://doi.org/10.1111/cobi.12533
8.
Falcucci, A., Maiorano, L., & Boitani, L. (2007). Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecology, 22(4), 617–631. https://doi.org/10.1007/s10980-006-9056-4
9.
Plieninger, T., Hui, C., Gaertner, M., & Huntsinger, L. (2014). The impact of land abandonment on species richness and abundance in the Mediterranean Basin: A meta-analysis. PLOS ONE, 9, e98355. https://doi.org/10.1371/journal.pone.0098355
10.
Cramer, V. A., Hobbs, R. J., & Standish, R. J. (2008). What’s new about old fields? Land abandonment and ecosystem assembly. Trends in Ecology & Evolution, 23, 104–112. https://doi.org/10.1016/j.tree.2007.10.005
11.
Moreira, F., Rego, F. C., & Ferreira, P. G. (2001). Temporal (1958–1995) pattern of change in a cultural landscape of northwestern Portugal: Implications for fire occurrence. Landscape Ecology, 16, 557–567. https://doi.org/10.1023/A:1013130528470
12.
Rey Benayas, J. M., Martins, A., Nicolau, J. M., & Schulz, J. J. (2007). Abandonment of agricultural land: An overview of drivers and consequences. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2, 1–14. https://doi.org/10.1079/PAVSNNR20072057
13.
Silva, J. F., Pena, S. B., Cunha, N. S., Ribeiro, P. F., Moreira, F., & Santos, J. L. (2023). Exploring Land System Options to Enhance Fire Resilience under Different Land Morphologies. Fire, 6(10), 382. https://doi.org/10.3390/fire6100382
14.
MacDonald, D., Crabtree, J. R., Wiesinger, G., Dax, T., Stamou, N., Fleury, P., et al. (2000). Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. Journal of Environmental Management, 59, 47–69. https://doi.org/10.1006/jema.1999.0335
15.
Borrelli, P., Panagos, P., Ballabio, C., Lugato, E., Weynants, M., & Montanarella, L. (2016). Towards a pan-European assessment of land susceptibility to wind erosion. Land Degradation & Development, 27(4), 1093–1105. https://doi.org/10.1002/ldr.2318
16.
Candeloro, G., & Tartari, M. (2025). Heritage-led sustainable development in rural areas: The case of Vivi Calascio community-based cooperative. Cities, 161, 105920. https://doi.org/10.1016/j.cities.2025.105920
17.
P. Udawatta, R., Rankoth, L., & Jose, S. (2019). Agroforestry and Biodiversity. Sustainability, 11(10), 2879. https://doi.org/10.3390/su11102879
18.
Tsiakiris, R., Stara, K., Kazoglou, Y., Kakouros, P., Bousbouras, D., Dimalexis, A., et al. (2024). Agroforestry and the Climate Crisis: Prioritizing Biodiversity Restoration for Resilient and Productive Mediterranean Landscapes. Forests, 15(9), 1648. https://doi.org/10.3390/f15091648
19.
Jiménez, M. N., Spotswood, E. N., Cañadas, E. M., & Navarro, F. B. (2015). Stand management to reduce fire risk promotes understorey plant diversity and biomass in a semi‐arid Pinus halepensis plantation. Applied Vegetation Science, 18(3), 467–480. https://doi.org/10.1111/avsc.12151
20.
Costantino, C., Calleo, A., Benedetti, A. C., Bartolomei, C., & Predari, G. (2024). Fostering Resilient and Sustainable Rural Development through Nature-Based Tourism, Digital Technologies, and Built Heritage Preservation: The Experience of San Giovanni Lipioni, Italy. Sustainability, 16(13), 5588. https://doi.org/10.3390/su16135588
21.
Bracchetti, L., Carotenuto, L., & Catorci, A. (2012). Land-cover changes in a remote area of central Apennines (Italy) and management directions. Landscape and Urban Planning, 104(2), 157–170. https://doi.org/10.1016/j.landurbplan.2011.09.005
22.
Martinelli, F., Vollheyde, A.-L., Cebrián-Piqueras, M. A., von Haaren, C., Lorenzetti, E., Barberi, P., et al. (2022). LEGU-MED: Developing Biodiversity-Based Agriculture with Legume Cropping Systems in the Mediterranean Basin. Agronomy, 12(1), 132. https://doi.org/10.3390/agronomy12010132
23.
Ferrara, A., Biró, M., Malatesta, L., Molnár, Z., Mugnoz, S., Tardella, F. M., et al. (2021). Land-use modifications and ecological implications over the past 160 years in the central Apennine mountains. Landscape Research, 46(7), 932–944. https://doi.org/10.1080/01426397.2021.1922997
24.
Garbarino, M., Morresi, D., Urbinati, C., Malandra, F., Motta, R., Sibona, E. M., et al. (2020). Contrasting land use legacy effects on forest landscape dynamics in the Italian Alps and the Apennines. Landscape Ecology, 35(12), 2679–2694. https://doi.org/10.1007/s10980-020-01013-9
25.
Visentin, D., Potì, A., Bassetti, M., Bertola, S., Carra, M., Cattabriga, G., et al. (2022). A new Early Holocene settlement in Central Italy: Contrada Pace (Marche region). Alpine and Mediterranean Quaternary, 35(1), 47–68. https://doi.org/10.26382/AMQ.2022.03
26.
Bradley, G. (2000). Ancient Umbria: state, culture, and identity in central Italy from the Iron Age to the Augustan era. OUP Oxford. https://doi.org/10.1093/oso/9780199245147.001.0001
27.
Agnoletti, M., Piras, F., Venturi, M., & Santoro, A. (2022). Cultural values and forest dynamics: The Italian forests in the last 150 years. Forest Ecology and Management, 503, 119655. https://doi.org/10.1016/j.foreco.2021.119655
28.
Mensing, S. A., Schoolman, E. M., Tunno, I., Noble, P. J., Sagnotti, L., Florindo, F., et al. (2018). Historical ecology reveals landscape transformation coincident with cultural development in central Italy since the Roman Period. Scientific Reports, 8(1), 2138. https://doi.org/10.1038/s41598-018-20286-4
29.
Brando, G., Pagliaroli, A., Cocco, G., & Di Buccio, F. (2020). Site effects and damage scenarios: The case study of two historic centers following the 2016 Central Italy earthquake. Engineering Geology, 272, 105647. https://doi.org/10.1016/j.enggeo.2020.105647
30.
Cianchino, G., Masciotta, M. G., Verazzo, C., & Brando, G. (2023). An Overview of the Historical Retrofitting Interventions on Churches in Central Italy. Applied Sciences, 13(1), 40. https://doi.org/10.3390/app13010040
31.
Cattani, C., Montaldi, C., Di Pietro, G., & Zullo, F. (2023). Effects of Urban Planning on Ecosystem Services: The Umbria Region Seismic Crater. Sustainability, 15(9), 7674. https://doi.org/10.3390/su15097674
32.
Zullo, F., Marucci, A., Fiorini, L., & Romano, B. (2018). The Italian Apennines between earthquakes, high naturalness and urban growth. Environment and Planning B: Urban Analytics and City Science, 47(4), 716–731. https://doi.org/10.1177/2399808318802326
33.
Martinelli, G., Facca, G., Genzano, N., Gherardi, F., Lisi, M., Pierotti, L., et al. (2020). Earthquake-related signals in Central Italy detected by hydrogeochemical and satellite techniques. Frontiers in Earth Science, 8, 584716. https://doi.org/10.3389/feart.2020.584716
34.
Lucchetti, R., & Morettini, G. (2024). Depopulation in the Central Apennines in the Twentieth Century: An Empirical Investigation. Italian Economic Journal, 1–32. https://doi.org/10.1007/s40797-024-00295-1
35.
de Luca, C., Tondelli, S., & Åberg, H. E. (2020). The Covid-19 pandemic effects in rural areas: Turning challenges into opportunities for rural regeneration. TeMA - Journal of Land Use, Mobility and Environment, 119–132. https://doi.org/10.6092/1970-9870/6844
36.
Tortorelli, A., Sabina, G., & Marchetti, B. (2024). A Cooperative Multi-Agent Q-Learning Control Framework for Real-Time Energy Management in Energy Communities. Energies, 17(20), 5199. https://doi.org/10.3390/en17205199
37.
Marchetti, B., Vitali, M., & Biancini, G. (2024). Renewable Energy Proliferation and the New Local Energy Community Paradigm: Analysis of a Case Study in Italy. Energies, 17(7), 1599. https://doi.org/10.3390/en17071599
38.
Castelli, G. (2024). Mediae terrae. Dopo il terremoto: la rinascita dell'Italia centrale oltre la fragilità del territorio (in Italian). Historica Edizioni.
39.
Manzi, A. (2012). Storia dell’ambiente nell’Appennino centrale (in Italian). Meta (Treglio).
40.
European Environment Agency (EEA). (n.d.). CORINE Land Cover (CLC) 1990–2018 [Data set]. https://land.copernicus.eu/pan-european/corine-land-cover (accessed 14 January 2025).
41.
HILDA+ Consortium. (n.d.). HILDA+ Global Land Use Change (1960–2019). [Data set]. https://landchangestories.org/hildaplus-mapviewer (accessed 14 January 2025).
42.
Ercole, S. (2024). Natura 2000 Network Reports. Monitoring reports and biodiversity assessments for Central Italy. ISPRA. https://indicatoriambientali.isprambiente.it/en/protected-areas/natura-2000-network (accessed 15 January 2025).
43.
Malandra, F., Vitali, A., Urbinati, C., & Garbarino, M. (2018). 70 Years of Land Use/Land Cover Changes in the Apennines (Italy): A Meta-Analysis. Forests, 9(9), 551. https://doi.org/10.3390/f9090551
44.
Sentinel-2 (ESA). (2020). Multispectral imagery for land cover analysis. Copernicus Open Access Hub. https://land.copernicus.eu/en/products?tab=full_coverage_land_cover__use (accessed 15 January 2025).
45.
Assini, S., Filipponi, F., & Zucca, F. (2015). Land cover changes in an abandoned agricultural land in the Northern Apennine (Italy) between 1954 and 2008: Spatio-temporal dynamics. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 149(5), 807–817. https://doi.org/10.1080/11263504.2014.983202
46.
Topographic Military Maps of Italy. (1954–1965). Cartografia IGM 1:25,000. Istituto Geografico Militare Italiano. https://www.igmi.org/it/descrizione-prodotti/cartografia-stampata/la-serie-25v-1 (accessed 15 January 2025).
47.
Malatesta, L., Tardella, F. M., Tavoloni, M., Postiglione, N., Piermarteri, K., & Catorci, A. (2019). Land use change in the high mountain belts of the central Apennines led to marked changes of the grassland mosaic. Applied Vegetation Science, 22(2), 243–255. https://doi.org/10.1111/avsc.12416
48.
Italian National Forest Inventory. (n.d.). Italian National Inventory of Forest and Forest Carbon pools (INFC-2015). https://www.inventarioforestale.org/en (accessed 14 January 2025)
49.
Luyssaert, S., Schulze, E. D., Börner, A., Knohl, A., Hessenmöller, D., Law, B. E., et al. (2008). Old-growth forests as global carbon sinks. Nature, 455(7210), 213–215. https://doi.org/10.1038/nature07276
50.
Mäkelä, A., del Río, M., Hynynen, J., Hawkins, M. J., Reyer, C., Soares, P., et al. (2012). Using stand-scale forest models for estimating indicators of sustainable forest management. Forest Ecology and Management, 285, 164–178. https://doi.org/10.1016/j.foreco.2012.07.041
51.
MODIS (NASA). (n.d.). MOD16 Global Evapotranspiration Product. https://modis.gsfc.nasa.gov/data/dataprod/mod16.php (accessed 16 January 2025).
52.
ISPRA – Istituto Superiore per la Protezione e la Ricerca Ambientale. (n.d.). Italian Hydrological Data Service – Streamflow and Precipitation Data. https://www.isprambiente.gov.it/en/databases/data-base-collection/inland-waters (accessed 16 January 2025).
53.
SWAT (Soil and Water Assessment Tool). (2022). Hydrological model documentation and applications. USDA & Texas A&M AgriLife. https://swat.tamu.edu (accessed 12 December 2024).
54.
European Forest Fire Information System (EFFIS). (2023). Fire Database and Fuel Models. Copernicus Emergency Management Service. https://effis.jrc.ec.europa.eu (accessed 16 January 2025).
55.
Moreira, F., Viedma, O., Arianoutsou, M., Curt, T., Koutsias, N., Rigolot, E., et al. (2011). Landscape–wildfire interactions in southern Europe: implications for landscape management. Journal of Environmental Management, 92(10), 2389–2402 https://doi.org/10.1016/j.jenvman.2011.06.028
56.
European Soil Data Centre (ESDAC). (2022). Soil erosion risk and organic carbon [Data set]. https://esdac.jrc.ec.europa.eu (accessed 14 January 2025)
57.
FAO. (2023). Harmonized World Soil Database v2.0 [Data set]. https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v20/en (accessed 12 December 2024).
58.
Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., et al. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communincations, 8, 2013. https://doi.org/10.1038/s41467-017-02142-7
Journal Menu
Journal Contact
Highlights of Sustainability
Editorial Office
Highlights of Science
Avenida Madrid, 189-195, 3-3
08014 Barcelona, Spain
08014 Barcelona, Spain
Cathy Wang
Managing Editor