Article    Peer-Reviewed
Peer Review

Smart and Resilient Mobility Services Platform for Managing Traffic Disruptive Events

Hala Aburas
Civil and geo-Environmental Engineering Laboratory (LGCgE), Lille University, 59000 Lille, France
Academic Editor:
Highlights of Sustainability, 2024, 3(2), 163–183.
Received: 30 December 2023    Accepted: 16 April 2024    Published: 28 April 2024
This article aims to develop a smart mobility solution to enhance the travel experience of individuals facing traffic disruptive events. Unlike prior research focusing on isolated solutions for managing these events, this study takes a holistic approach combining real-time monitoring, predictive modeling, route guidance, and effective communication to create efficient traffic disruption management. The study introduces the Smart and Resilient Mobility Services Platform (SRMS), specifically designed to address mobility restrictions as a form of disruptive events in the Palestinian territories, West Bank. SRMS empowers users to make well-informed decisions by providing services such as real-time mapping of mobility restrictions, a prompt notification system, informal route mapping, and alternative path suggestions. Moreover, it aims to enhance engagement among travelers and citizens by adopting spatial crowdsourcing as the primary data source for potential restrictions and embracing the User-Centered Design (UCD) approach to enrich users’ interaction with the developed solution. The methodology involves presenting the architectural layering system of the SRMS platform, and detailing the prototyping and design development considering the UCD approach. Results present the practical implementation of the SRMS tailored to the Palestinian context and adopted UCD.
Figures in this Article
Copyright © 2024 Aburas. This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use and distribution provided that the original work is properly cited.
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.
Cite this Article
Aburas, H. (2024). Smart and Resilient Mobility Services Platform for Managing Traffic Disruptive Events. Highlights of Sustainability, 3(2), 163–183.
Gu, S., Li, K., Feng, T., Yan, D., & Liu, Y. (2022). The prediction of potential risk path in railway traffic events. Reliability Engineering & System Safety, 222, 108409.
Arrighi, C., Pregnolato, M., & Castelli, F. (2021). Indirect flood impacts and cascade risk across interdependent linear infrastructures. Natural Hazards and Earth System Sciences, 21(6), 1955–1969.
Karaer, A., Ulak, M. B., Ozguven, E. E., & Sando, T. (2020). Reducing the non-recurrent freeway congestion with detour operations: case study in Florida. Transportation Engineering, 2, 100026.
Safitri, N. D., & Chikaraishi, M. (2022). Impact of transport network disruption on travel demand: A case study of the July 2018 heavy rain disaster in Japan. Asian Transport Studies, 8, 100057.
Kurth, M., Kozlowski, W., Ganin, A., Mersky, A., Leung, B., Dykes, J., et al. (2020). Lack of resilience in transportation networks: Economic implications. Transportation Research Part D: Transport and Environment, 86, 102419.
Yap, M., & Cats, O. (2021). Predicting disruptions and their passenger delay impacts for public transport stops. Transportation, 48(4), 1703–1731.
Sarker, R. I., Kaplan, S., Mailer, M., & Timmermans, H. J. (2019). Applying affective event theory to explain transit users’ reactions to service disruptions. Transportation Research Part A: Policy and Practice, 130, 593–605.
Anuar, W. K., Lee, L. S., Pickl, S., & Seow, H. V. (2021). Vehicle routing optimisation in humanitarian operations: A survey on modelling and optimisation approaches. Applied Sciences, 11(2), 667.
Lu, J., Li, B., Li, H., & Al-Barakani, A. (2021). Expansion of city scale, traffic modes, traffic congestion, and air pollution. Cities, 108, 102974.
Song, X., Zhang, H., Akerkar, R., Huang, H., Guo, S., Zhong, L., et al. (2020). Big data and emergency management: concepts, methodologies, and applications. IEEE Transactions on Big Data, 8(2), 397–419.
Rathee, M., Bačić, B., & Doborjeh, M. (2023). Automated road defect and anomaly detection for traffic safety: a systematic review. Sensors, 23(12), 5656.
Lee, C., Kim, Y., Jin, S., Kim, D., Maciejewski, R., Ebert, D., et al. (2019). A visual analytics system for exploring, monitoring, and forecasting road traffic congestion. IEEE Transactions on Visualization and Computer Graphics, 26(11), 3133–3146.
Aljuaydi, F., Wiwatanapataphee, B., & Wu, Y. H. (2023). Multivariate machine learning-based prediction models of freeway traffic flow under non-recurrent events. Alexandria Engineering Journal, 65, 151–162.
Kang, Y., Cai, Z., Tan, C. W., Huang, Q., & Liu, H. (2020). Natural language processing (NLP) in management research: A literature review. Journal of Management Analytics, 7(2), 139–172.
Essien, A., Petrounias, I., Sampaio, P., & Sampaio, S. (2021). A deep-learning model for urban traffic flow prediction with traffic events mined from twitter. World Wide Web, 24(4), 1345–1368.
Salazar-Carrillo, J., Torres-Ruiz, M., Davis, C. A., Jr., Quintero, R., Moreno-Ibarra, M., & Guzmán, G. (2021). Traffic congestion analysis based on a web-gis and data mining of traffic events from twitter. Sensors, 21(9), 2964.
Alkhabbas, F., De Sanctis, M., Bucchiarone, A., Cicchetti, A., Spalazzese, R., Davidsson, P., et al. (2022). Route: A framework for customizable smart mobility planners. In 2022 IEEE 19th International Conference on Software Architecture (ICSA) (pp. 169–179). IEEE.
Lakshmi, S., Srikanth, I., & Arockiasamy, M. (2019). Identification of traffic accident hotspots using geographical information system (GIS). International Journal of Engineering and Advanced Technology, 9(2), 4429–4438.
Almoshaogeh, M., Abdulrehman, R., Haider, H., Alharbi, F., Jamal, A., Alarifi, S., et al. (2021). Traffic accident risk assessment framework for qassim, saudiarabia: Evaluating the impact of speed cameras. Applied Sciences, 11(15), 6682.
Audu, A. A., Iyiola, O. F., Popoola, A. A., Adeleye, B. M., Medayese, S., Mosima, C., et al. (2021). The application of geographic information system as an intelligent system towards emergency responses in road traffic accident in Ibadan. Journal of Transport and Supply Chain Management, 15, 17.
Kong, X., Liu, X., Jedari, B., Li, M., Wan, L., & Xia, F. (2019). Mobile crowdsourcing in smart cities: Technologies, applications, and future challenges. IEEE Internet of Things Journal, 6(5), 8095–8113.
Ang, K. L. M., Seng, J. K. P., & Ngharamike, E. (2022). Towards crowdsourcing internet of things (crowd-iot): Architectures, security and applications. Future Internet, 14(2), 49.
Lin, H., Garg, S., Hu, J., Kaddoum, G., Peng, M., & Hossain, M. S. (2020). Blockchain and deep reinforcement learning empowered spatial crowdsourcing in software-defined internet of vehicles. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3755–3764.
Habbas, W., & Berda, Y. (2023). Colonial management as a social field: The Palestinian remaking of Israel’s system of spatial control. Current Sociology, 71(5), 848–865.
Griffiths, M., & Repo, J. (2021). Women and checkpoints in Palestine. Security Dialogue, 52(3), 249–265.
B’Tselem. (2023). Settler Violence in the WB. (accessed 22 January 2023).
OCHA. (2020). West Bank Access Restrictions.
Lam, D., & Head, P. (2012). Sustainable Urban Mobility. In O. Inderwildi & S. D. King (Eds.), Energy, Transport, & the Environment. Springer.
Calì, M., & Miaari, S. H. (2018). The labor market impact of mobility restrictions: Evidence from the West Bank. Labour Economics, 51, 136–151.
Boussauw, K., & Vanin, F. (2018). Constrained sustainable urban mobility: the possible contribution of research by design in two Palestinian cities. Urban Design International, 23, 182–199.
Braverman, I. (2011). Civilized borders: A study of Israel's new crossing administration. Antipode, 43(2), 264–295.
Rijke, A., & Minca, C. (2019). Inside Checkpoint 300: Checkpoint regimes as spatial political technologies in the Occupied Palestinian Territories. Antipode, 51(3), 968–988.
Amira, S. (2021). The slow violence of Israeli settler-colonialism and the political ecology of ethnic cleansing in the West Bank. Settler Colonial Studies, 11(4), 512–532.
Aburas, H., & Shahrour, I. (2021). Impact of the Mobility Restrictions in the Palestinian Territory on the Population and the Environment. Sustainability, 13(23), 13457.
Shahrour, I., & Xie, X. (2021). Role of Internet of Things (IoT) and crowdsourcing in smart city projects. Smart Cities, 4(4), 1276–1292.
Haque, A. B., Bhushan, B., & Dhiman, G. (2022). Conceptualizing smart city applications: Requirements, architecture, security issues, and emerging trends. Expert Systems, 39(5), e12753.
Al-Sahili, K., & Dwaikat, M. (2019). Modeling geometric design consistency and road safety for two-lane rural highways in the west bank, Palestine. Arabian Journal for Science and Engineering, 44, 4895–4909.
Huang, X., Wang, X., Pei, J., Xu, M., Huang, X., & Luo, Y. (2018). Risk assessment of the areas along the highway due to hazardous material transportation accidents. Natural Hazards, 93, 1181–1202.
Liu, B., Siu, Y. L., & Mitchell, G. (2016). Hazard interaction analysis for multi-hazard risk assessment: a systematic classification based on hazard-forming environment. Natural Hazards and Earth System Sciences, 16(2), 629–642.
Bishara, A. (2015). Driving while Palestinian in Israel and the West Bank: The politics of disorientation and the routes of a subaltern knowledge. American Ethnologist, 42(1), 33–54.
Lwanga-Ntale, C., & Owino, B. O. (2020). Understanding vulnerability and resilience in Somalia. Jàmbá: Journal of Disaster Risk Studies, 12(1).
Sajjad, M. (2021). Disaster resilience in Pakistan: A comprehensive multi-dimensional spatial profiling. Applied Geography, 126, 102367.
Sohouenou, P. Y., Neves, L. A., Christodoulou, A., Christidis, P., & Presti, D. L. (2021). Using a hazard-independent approach to understand road-network robustness to multiple disruption scenarios. Transportation Research Part D: Transport and Environment, 93, 102672.
Leobons, C. M., Campos, V. B. G., & de Mello Bandeira, R. A. (2019). Assessing urban transportation systems resilience: a proposal of indicators. Transportation Research Procedia, 37, 322–329.
Samper, J. (2012). Urban resilience in situations of chronic violence case study of Medellin, Colombia. Massachusetts Institute of Technology MIT, 1–34.
Dunckel Graglia, A. (2016). Finding mobility: women negotiating fear and violence in Mexico City’s public transit system. Gender, Place & Culture, 23(5), 624–640.
Jayasena, N. S., Mallawaarachchi, H., & Waidyasekara, K. G. A. S. (2019). Stakeholder analysis for smart city development project: An extensive literature review. In MATEC web of conferences (Vol. 266, p. 06012). EDP Sciences.
Lindenau, M., & Böhler-Baedeker, S. (2014). Citizen and stakeholder involvement: a precondition for sustainable urban mobility. Transportation Research Procedia, 4, 347–360.
Phuttharak, J., & Loke, S. W. (2018). A review of mobile crowdsourcing architectures and challenges: Toward crowd-empowered internet-of-things. IEEE Access, 7, 304–324.
Esri. (2023). Shapefile. (accessed 7 April 2023).
Jay, B., Alberta, S., & Royal, M. (2019). The tools of citizen science: An evaluation of map-based crowdsourcing platforms Chickadee Technology. Spatial Knowledge and Information Canada, 7(4).
Khaund, T., Hussain, M. N., Shaik, M., & Agarwal, N. (2020). Telegram: Data collection, opportunities and challenges. In Annual International Conference on Information Management and Big Data (pp. 513–526). Springer, Cham.
Anand, A., Patel, R., & Rajeswari, D. (2022). A Comprehensive Synchronization by Deriving Fluent Pipeline and Web Scraping through Social Media for Emergency Services. In 2022 International conference on advances in computing, communication and applied informatics (ACCAI) (pp. 1–8). IEEE.
Dongo, I., Cadinale, Y., Aguilera, A., Martínez, F., Quintero, Y., & Barrios, S. (2020). Web scraping versus twitter API: a comparison for a credibility analysis. In Proceedings of the 22nd International conference on information integration and web-based applications & services (pp. 263–273). Association for Computing Machinery.
Wang, R. Q., Mao, H., Wang, Y., Rae, C., & Shaw, W. (2018). Hyper-resolution monitoring of urban flooding with social media and crowdsourcing data. Computers & Geosciences, 111, 139–147.
Esri. (2023). Why Use Cloud Infrastructure for ArcGIS? (accessed 20 March 2023).
Esri. (2023). ArcGIS Trust Center. (accessed 15 March 2023).
Corral-Plaza, D., Medina-Bulo, I., Ortiz, G., & Boubeta-Puig, J. (2020). A stream processing architecture for heterogeneous data sources in the Internet of Things. Computer Standards & Interfaces, 70, 103426.
Zou, L., Lam, N. S., Cai, H., & Qiang, Y. (2018). Mining Twitter data for improved understanding of disaster resilience. Annals of the American Association of Geographers, 108(5), 1422–1441.
Elhenawy, M., Chen, H., & Rakha, H. (2014). Random forest travel time prediction algorithm using spatiotemporal speed measurements. In Proceedings of the 21st World Congress on Intelligent Transport Systems and ITS America Annual Meeting 2014 (pp. 2000–2215). ITS America.
Zhao, Y., Gong, X., & Chen, X. (2020). Privacy-preserving incentive mechanisms for truthful data quality in data crowdsourcing. IEEE Transactions on Mobile Computing, 21(7), 2518–2532.
Tong, Y., Zhou, Z., Zeng, Y., Chen, L., & Shahabi, C. (2020). Spatial crowdsourcing: a survey. The VLDB Journal, 29, 217–250.
Tandel, S., & Jamadar, A. (2018). Impact of progressive web apps on web app development. International Journal of Innovative Research in Science, Engineering and Technology, 7(9), 9439–9444.
Shah, K., Sinha, H., & Mishra, P. (2019). Analysis of cross-platform mobile app development tools. In 2019 IEEE 5th International Conference for Convergence in Technology (I2CT) (pp. 1–7). IEEE.
Rochim, R. V., Rahmatulloh, A., El-Akbar, R. R., & Rizal, R. (2023). Performance Comparison of Response Time Native, Mobile and Progressive Web Application Technology. Innovation in Research of Informatics (INNOVATICS), 5(1), 36–43.
Jobe, W. (2013). Native Apps vs. Mobile Web Apps. International Journal of Interactive Mobile Technologies, 7(4), 27–32.
Musolino, G., Rindone, C., & Vitetta, A. (2022). Models for supporting mobility as a service (MaaS) design. Smart Cities, 5(1), 206–222.
Rahmanian, B., & Davis, J. G. (2014). User interface design for crowdsourcing systems. In Proceedings of the 2014 International Working Conference on Advanced Visual Interfaces (pp. 405–408). Association for Computing Machinery.
Blackett, C. (2021). Human-centered design in an automated world. In D. Russo, T. Ahram, W. Karwowski, G. Di Bucchianico, & R. Taiar (Eds.), Intelligent Human Systems Integration 2021: Proceedings of the 4th International Conference on Intelligent Human Systems Integration (IHSI 2021) (pp. 17–23).
Vallet, F., Puchinger, J., Millonig, A., Lamé, G., & Nicolaï, I. (2020). Tangible futures: Combining scenario thinking and personas-A pilot study on urban mobility. Futures, 117, 102513.
Bano, M., & Zowghi, D. (2015). A systematic review on the relationship between user involvement and system success. Information and Software Technology, 58, 148–169.
Lopes, A., Valentim, N., Moraes, B., Zilse, R., & Conte, T. (2018). Applying user-centered techniques to analyze and design a mobile application. Journal of Software Engineering Research and Development, 6, 1–23.
Cooper, A. (1999). The Inmates Are Running the Asylum. In U. Arend, E. Eberleh, & K. Pitschke (Eds.), Software-Ergonomie ’99: Design von Informationswelten. Springer-Verlag.
Carroll, J. M., & Rosson, M. B. (1992). Getting around the task-artifact cycle: How to make claims and design by scenario. ACM Transactions on Information Systems (TOIS), 10(2), 181–212.
Sim, W. W., & Brouse, P. (2015). Developing ontologies and persona to support and enhance requirements engineering activities–a case study. Procedia Computer Science, 44, 275–284.
Fernandes, U. D. S., Prates, R. O., Chagas, B. A., & Barbosa, G. A. (2021). Analyzing MoLIC's Applicability to Model the interaction of Conversational Agents: A case study on ANA Chatbot. In Proceedings of the XX Brazilian Symposium on Human Factors in Computing Systems (pp. 1–7). Association for Computing Machinery.
Barbosa, S. D. J., & de Paula, M. G. (2003). Designing and Evaluating Interaction as Conversation: A Modeling Language Based on Semiotic Engineering. In J. A. Jorge, N. Jardim Nunes, & J. Falcão e Cunha (Eds.), DSV-IS 2003: Interactive Systems. Design, Specification, and Verification (pp. 16–33). Springer.
Lopes, A., dos Santos Marques, A. B., Barbosa, S. D., & Conte, T. (2015). MoLVERIC: An Inspection Technique for MoLIC Diagrams. In SEKE (pp. 13–17).
PCBS. (2019). Household Survey on Information and Communications Technology–2019. (accessed 23 April 2021).
Braun, V., Clarke, V., Boulton, E., Davey, L., & McEvoy, C. (2021). The online survey as a qualitative research tool. International Journal of Social Research Methodology, 24(6), 641–654.
PCBS. (2022). العاملون حسب المحافظة في مكان العمل 2022 (in Arabic).
Esri. (2023). ArcGIS Experience Builder. (accessed 22 February 2023).
Geomolg. (2020). Geomolg. (accessed 20 March 2020).
Journal Menu
Journal Contact
Highlights of Sustainability Editorial Office
Highlights of Science
Avenida Madrid, 189-195, 3-3
08014 Barcelona, Spain
Tel. +34 93 138 23 89
Cathy Wang Managing Editor
Submit Your Article
Highlights Sustain., ISSN 2696-628X. Published quarterly by Highlights of Science.
Subscribe to read the latest articles and newsletters from Highlights of Science.