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Article 
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Abstract The aim of the present work is to identify the unknown dynamic parameters of a bi-
cycle using a sliding mode observer and Particle Swarm Optimization (PSO) approaches. The 
estimation of bicycle dynamics requires a good knowledge of dynamic parameters such as damp-
ing coefficient, spring stiffness, and unsprung masses, among others. In this paper, suspension 
stiffness and damping coefficient have been identified using the Least Squares Method and com-
pared with those obtained using the PSO technique. Real-time tests have been carried out on an 
instrumented bicycle equipped with various sensors to measure its dynamics. The measures com-
ing from these sensors have been considered to validate the estimation tools. However, only the 
vertical wheel displacement measurements have been used to perform the observer. Experi-
mental results are presented and discussed to demonstrate the quality of the proposed approach. 

Keywords bicycle modeling; sliding mode observer; particle swarm optimization; identification 
 
 

1. Introduction 
In order to improve cycling safety and foster the peaceful coexistence of cyclists and other 

road users in urban spaces, it is crucial to consider behavioral aspects in terms of bicycle control 
and the similarity of behavior exhibited in real situations [1,2]. Knowledge of the physical pa-
rameters of a bicycle is essential for finer and more accurate modeling of the bicycle. This helps 
study the interaction between bicycles and road surface characteristics and geometries, and their 
effect on cyclist behavior. However, these parameters are generally not well known due to a lack 
of information from manufacturers or the difficulty in measuring some of them. Researchers 
working in this field use several techniques to address this problem: simulating the model by 
neglecting a certain number of parameters, using parameters found in the literature without 
knowing the conditions under which these parameters were determined, or using parametric 
identification methods from the field of automatic control. We used the last approach in this 
work. Indeed, the modeling of a bicycle that we carried out in our previous work on modeling 
and simulation of bicycle dynamics published in [3] and on subjective validity of bicycle simula-
tors published in [4,5], was based on physical parameters found in the literature. Besides, few 
works have been published on bicycle modeling with precise values of mechanical parameters 
[6–8]. Therefore, in this paper, we develop an original method to identify parameters such as the 
damping coefficient and stiffness using Particle Swarm Optimization (PSO) combined with the 
High Order Sliding Mode observer (HOSM). We show that HOSM is necessary to estimate in 
finite time the positions, speeds, and accelerations of the bicycle [9,10]. In the absence of external 
disturbances, existing tools and methods, such as Kalman filters or Luenberger observers, can be 
directly applied for asymptotic reconstruction of the system states. However, in the presence of 
disturbances, standard techniques are not accurate; the Luenberger observer can only ensure 
convergence to a bounded region near the real value of the state. Sliding mode-based observers 
are presented as an alternative for the observation of perturbed systems. In particular, HOSM-
based observers are successful for state observation of perturbed systems due to their high preci-
sion and robust behavior with respect to parametric uncertainties. Moreover, partial or complete 
knowledge of the system model allows for the application of techniques for parametric or dis-
turbance reconstruction. 

Some previous work had already combined both techniques, HOSM and PSO in different 
manners. For example, in [11], the authors used a sliding mode controller (SMC) in order to 
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control the dynamics of the Quadrator vehicle. PSO is developed here to solve the tuning prob-
lem of SMC. The authors in [12] have applied the same methodology in order to optimize SMC 
parameters by using PSO for an autonomous vehicle. 

A new approach and application are highlighted in this paper. Actually, the concept of 
HOSM is applied in order to state observation of a bicycle, thereby enhancing the precision and 
robustness of dynamic variables estimation. Indeed, HOSM control excels in managing systems 
with significant uncertainties and disturbances by using higher-order derivatives to maintain ro-
bustness. This technique presents many advantages, especially for modeling the complex dynam-
ics of bicycles. By enabling finite-time estimation of dynamic variables, we propose to use the 
PSO algorithm to identify unknown parameters. This technique, inspired by the social behaviors 
of birds and fish, is effective in exploring large search spaces and converging to optimal solutions, 
making it well-suited for parameter identification in complex systems. Previous studies have 
demonstrated the effectiveness of PSO in various applications [13–17], and this work builds on 
those findings by integrating PSO into parameter estimation for bicycle models. 

The paper is structured as follows: the first section provides a brief overview of different bi-
cycle models; the second part is devoted to bicycle modeling; in the third part, a third-order 
observer is developed to estimate dynamic variables; the fourth part focuses on parameter iden-
tification using the PSO method; the fifth part describes the experimentation and discusses the 
validation results; and in the last part, the conclusion and some perspectives are given. 

2. Bicycle Modeling 
In order to modelize a bicycle, researchers deployed the theoretical physical approach, such 

as Lagrangian, Euler equations, or the detailed nonlinear Whipple scientific description [6,7]; 
for example, Whipple [8] used the Linear Quadratic Regulator (LQR) algorithm to analyze the 
bicycle mathematical model. This method is considered accurate, but time-consuming at the 
same time. For a straightforward and time-efficient modeling, the classical single-track model 
could be an alternative [18]. The bicycle mathematical model aims to reproduce the dynamics 
of a bicycle, in simulation or in a real environment. The geometrical and physical parts of the 
bicycle are divided as follows: the front part includes the steering axis, the front fork, the front 
wheel, and a fraction of the cyclist’s mass; and the rear part includes the frame, the rear wheel, 
and the other fraction of the cyclist’s body mass. The reactions of total mass are modeled by 
springs representing the tire’s stiffness (𝑘𝑘𝐹𝐹  and 𝑘𝑘𝑅𝑅) and damping coefficients (𝐵𝐵𝐹𝐹  and 𝐵𝐵𝑅𝑅). The 
fractions of the bicycle-rider-system mass are 𝑚𝑚𝐹𝐹  and 𝑚𝑚𝑅𝑅. Distances from the center of gravity 
to the center of the front wheel and rear wheel are represented by 𝑙𝑙𝐹𝐹  and 𝑙𝑙𝑅𝑅, respectively. The 
bicycle has no suspension system, and the pitch angle effect is neglected. The road profile is repre-
sented by the variables 𝑢𝑢𝐹𝐹  and 𝑢𝑢𝑅𝑅. The developed model for this work is shown in Figure 1. 

The vertical acceleration values, 𝑧𝑧𝐹̈𝐹  and 𝑧𝑧𝑅̈𝑅, of the front and rear wheel respectively, are 
obtained as follows: 

⎩�
�⎨
��
⎧𝑧𝑧𝐹̈𝐹 = 𝑘𝑘𝐹𝐹 (𝑢𝑢𝐹𝐹 − 𝑧𝑧𝐹𝐹) + 𝐵𝐵𝐹𝐹 (𝑢𝑢𝐹̇𝐹 − 𝑧𝑧𝐹̇𝐹 )

𝑚𝑚𝐹𝐹

𝑧𝑧𝑅̈𝑅 = 𝑘𝑘𝑅𝑅(𝑢𝑢𝑅𝑅 − 𝑧𝑧𝑅𝑅) + 𝐵𝐵𝑅𝑅(𝑢𝑢𝑅̇𝑅 − 𝑧𝑧𝑅̇𝑅)
𝑚𝑚𝑅𝑅

, (1) 

where 𝑧𝑧𝐹𝐹  and 𝑧𝑧𝑅𝑅 are the vertical displacements of the Center of Gravity (COG) of the front 
and rear parts respectively, and 𝑢𝑢𝐹𝐹  and 𝑢𝑢𝑅𝑅 are the front and rear values of the road profile. 

The normal forces 𝐹𝐹𝑛𝑛𝑛𝑛  and 𝐹𝐹𝑛𝑛𝑛𝑛 acting on the wheels are calculated as follows: 

�𝐹𝐹𝑛𝑛𝑛𝑛 = 𝐹𝐹𝑐𝑐𝑐𝑐 + 𝑘𝑘𝐹𝐹 (𝑢𝑢𝐹𝐹 − 𝑧𝑧𝐹𝐹) + 𝐵𝐵𝐹𝐹 (𝑢𝑢̇𝐹𝐹 − 𝑧𝑧𝐹̇𝐹 )
𝐹𝐹𝑛𝑛𝑛𝑛 = 𝐹𝐹𝑐𝑐𝑐𝑐 + 𝑘𝑘𝑅𝑅(𝑢𝑢𝑅𝑅 − 𝑧𝑧𝑅𝑅) + 𝐵𝐵𝑅𝑅(𝑢𝑢̇𝑅𝑅 − 𝑧𝑧𝑅̇𝑅), (2) 

where 𝐹𝐹𝑐𝑐𝑐𝑐  and 𝐹𝐹𝑐𝑐𝑐𝑐 are the static forces due to the weights of the wheels of the bicycle-rider 
system applied to the front and rear wheel. They were calculated by applying the equilibrium equa-
tion, assuming the bicycle-rider mass 𝑚𝑚 is equal to 85 kg, 𝐹𝐹𝑐𝑐𝑐𝑐  and 𝐹𝐹𝑐𝑐𝑐𝑐 are 230 N and 630 N, 
respectively. 

We assume that the front and rear tire vertical stiffness are equal (𝑘𝑘𝐹𝐹 = 𝑘𝑘𝑅𝑅 = 𝑘𝑘) and the 
damping coefficients of the front and rear wheel, 𝐵𝐵𝐹𝐹 = 𝐵𝐵𝑅𝑅 = 𝐵𝐵. Tyre width is neglected. 

The roll angle (𝜙𝜙) of the bicycle among the x-axis can be calculated using the speed 𝑣𝑣𝑥𝑥 and 
radius of curvature 𝑅𝑅𝑐𝑐 [19], as follows: 

https://www.hos.pub/
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Figure 1. Side view of the bicycle model, divided into two parts: the front and the rear. 
 

𝜙𝜙 = arctan �𝑣𝑣𝑥𝑥
2

𝑔𝑔𝑅𝑅𝑐𝑐
�. (3) 

The roll acceleration (𝜙𝜙)̈ is calculated using the mass and rotation matrices as in Equation (4): 

𝜙𝜙 ̈ = 𝑟𝑟31𝜙𝜙 + 𝑟𝑟32𝛿𝛿 + 𝑟𝑟34𝑣𝑣𝑥𝑥𝜓𝜓 ̇+ 𝑟𝑟36𝑣𝑣𝑥𝑥𝛿𝛿 ̇−
𝑚𝑚13𝑣𝑣𝑦𝑦 + 𝑚𝑚23𝜓𝜓̈ + 𝑚𝑚34𝛿𝛿 ̈

𝑚𝑚33
, (4) 

with 𝑣𝑣𝑥𝑥 and 𝑣𝑣𝑦𝑦 are respectively the longitudinal and lateral speed of the bicycle, and 

𝑟𝑟31 = (𝑚𝑚𝐹𝐹 𝑗𝑗 + 𝑚𝑚𝑅𝑅ℎ)𝑔𝑔, (5) 

where 𝜓𝜓 ̇ is yaw rate, 𝛿𝛿 ̇ is a derivative of the steering angle, j and h are the vertical components 
of the center of gravity for the front and rear part of the bicycle, respectively, and g is the gravi-
tational acceleration. 

The parameter 𝑟𝑟32 is calculated in Equation (6): 

𝑟𝑟32 = 𝑚𝑚𝐹𝐹𝑒𝑒𝑒𝑒 − 𝜂𝜂𝜂𝜂𝑛𝑛𝑛𝑛 , (6) 

where 𝑒𝑒 is the perpendicular distance between the center of gravity of the front part and the 
fork and 𝜂𝜂 is the bicycle trail. 

𝑟𝑟34 = −𝑚𝑚𝐹𝐹 𝑗𝑗 − 𝑚𝑚𝑅𝑅ℎ − 𝐼𝐼𝑦𝑦𝑅𝑅𝐹𝐹
𝑅𝑅𝐹𝐹

− 𝐼𝐼𝑦𝑦𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅

, (7) 

where 𝐼𝐼𝑦𝑦𝑅𝑅𝐹𝐹
 and 𝐼𝐼𝑦𝑦𝑅𝑅𝑅𝑅

 are the moments of inertia around the y-axis for the front and rear wheel 
respectively. 𝑅𝑅𝐹𝐹  and 𝑅𝑅𝑅𝑅 are the radii of the front and rear wheels. 

𝑟𝑟36 = −
𝐼𝐼𝑦𝑦𝑅𝑅𝐹𝐹

𝑅𝑅𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, (8) 

where 𝜖𝜖 is the bicycle caster angle (i.e., the angular displacement of the steering axis from the 
vertical axis of a steered wheel). 

⎩�
�⎨
��
⎧ 𝑚𝑚13 = 𝑚𝑚𝐹𝐹 𝑗𝑗 + 𝑚𝑚𝑅𝑅ℎ

𝑚𝑚23 = 𝑚𝑚𝐹𝐹 𝑗𝑗𝑗𝑗 − 𝐶𝐶𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + (𝐼𝐼𝑧𝑧𝑧𝑧𝑧𝑧 − 𝐼𝐼𝑥𝑥𝑥𝑥𝑥𝑥 ) sin 𝜖𝜖 cos 𝜖𝜖
𝑚𝑚33 = 𝑚𝑚𝐹𝐹 𝑗𝑗2 + 𝑚𝑚𝑅𝑅ℎ2 + 𝐼𝐼𝑥𝑥𝑥𝑥𝑥𝑥 + 𝐼𝐼𝑧𝑧𝑧𝑧𝑧𝑧 sin 𝜖𝜖2 + 𝐼𝐼𝑥𝑥𝑥𝑥𝑥𝑥 cos 𝜖𝜖2

𝑚𝑚34 = 𝑚𝑚𝐹𝐹 𝑒𝑒𝑒𝑒 + 𝐼𝐼𝑧𝑧𝑧𝑧𝑧𝑧 sin 𝜀𝜀

. (9) 

https://www.hos.pub/
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3. Sliding Mode Observer Design 
In order to evaluate the rollover risk, high high-order sliding mode observer is developed to 

estimate in finite time the state variables and identify unknown parameters [9,10]. 
To develop HOSM, the system Equation (1) is rewritten as follows: 

𝑀𝑀(𝑞𝑞)𝑞𝑞 ̈+ 𝐵𝐵(𝑞𝑞, 𝑞𝑞)̇𝑞𝑞 ̇+ 𝐾𝐾(𝑞𝑞) = 𝐹𝐹𝑔𝑔, (10) 

where 𝑀𝑀 ∈ ℜ2×2 is the inertia matrix (mass matrix), 𝐵𝐵 ∈ ℜ2×2 is the matrix taking into ac-
count the damping effects, 𝐾𝐾 ∈ ℜ2 is the spring’s stiffness vector and 𝐹𝐹𝑔𝑔 ∈ ℜ2 is the general-
ized forces composed of the road profile 𝑢𝑢 and its derivative 𝑢𝑢̇. The coordinates variable vector 
𝑞𝑞 ∈ ℜ2 is defined by 𝑞𝑞 = [𝑞𝑞1, 𝑞𝑞2]𝑇𝑇 , where 𝑞𝑞1 = 𝑧𝑧𝐹𝐹  and 𝑞𝑞1 = 𝑧𝑧𝑅𝑅 are respectively the front and 
rear wheel vertical displacements. 

In state space form, the system Equation (10) can be rewritten as: 

⎩�
�⎨
��
⎧ 𝑥𝑥1̇1 = 𝑥𝑥21

𝑥𝑥2̇1 = 𝑎𝑎1𝜑𝜑(𝑥𝑥11, 𝑥𝑥21)
𝑥𝑥1̇2 = 𝑥𝑥22

𝑥𝑥2̇2 = 𝑎𝑎2𝜑𝜑(𝑥𝑥12, 𝑥𝑥22)

, (11) 

where 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2)𝑇𝑇 = (𝑞𝑞, 𝑞𝑞)̇𝑇𝑇 ∈ ℜ4  is the state variables vector such that 𝑥𝑥1 = [𝑥𝑥11, 𝑥𝑥12]𝑇𝑇 =
[𝑧𝑧𝐹𝐹 , 𝑧𝑧𝑅𝑅]𝑇𝑇  and 𝑥𝑥2 = [𝑥𝑥1̇1, 𝑥𝑥1̇2]𝑇𝑇 = [𝑧𝑧𝐹̇𝐹 , 𝑧𝑧𝑅̇𝑅]𝑇𝑇 , 𝑦𝑦 = 𝑥𝑥1 = [𝑧𝑧𝐹𝐹 , 𝑧𝑧𝑅𝑅]𝑇𝑇  is the measured outputs vector of 
the system. The vectors of parameters are represented by 𝑎𝑎1 = [𝑘𝑘 𝑚𝑚𝐹𝐹 𝐵𝐵 𝑚𝑚𝐹𝐹⁄  ⁄ ]  and 𝑎𝑎2 =
[𝑘𝑘 𝑚𝑚𝑅𝑅 𝐵𝐵 𝑚𝑚𝑅𝑅⁄  ⁄ ], and the vectors are 

�𝜑𝜑(𝑥𝑥11, 𝑥𝑥21) = [(𝑢𝑢𝐹𝐹 − 𝑧𝑧𝐹𝐹 ), (𝑢𝑢̇𝐹𝐹 − 𝑧𝑧𝐹̇𝐹 )]𝑇𝑇

𝜑𝜑(𝑥𝑥12, 𝑥𝑥22) = [(𝑢𝑢𝑅𝑅 − 𝑧𝑧𝑅𝑅), (𝑢𝑢̇𝑅𝑅 − 𝑧𝑧𝑅̇𝑅)]𝑇𝑇
.  

To simplify the system, the vector of unknown parameters 𝑎𝑎 is introduced: 

𝑎𝑎 =

⎩�
�⎨
��
⎧[𝑎𝑎11, 𝑎𝑎21] = � 𝑘𝑘

𝑚𝑚𝐹𝐹

𝐵𝐵
𝑚𝑚𝐹𝐹

�

[𝑎𝑎12, 𝑎𝑎22] = � 𝑘𝑘
𝑚𝑚𝑅𝑅

𝐵𝐵
𝑚𝑚𝑅𝑅

�
.  

To be able to estimate the state variables, the following observer is developed, and the con-
vergence is proved [9,10]: 

⎩�
⎨
�⎧𝑥𝑥̂1̇ = 𝑥𝑥2̂ − 𝜆𝜆0∇(𝑣𝑣1)𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑣𝑣1)

𝑥𝑥̂2̇ = 𝑥𝑥3̂ − 𝜆𝜆1∇(𝑣𝑣2)𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑣𝑣2)
𝑥𝑥̂3̇ = −𝜆𝜆2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑣𝑣3)

, (12) 

where 𝑥𝑥1̂ , 𝑥𝑥2̂  and 𝑥𝑥3̂  are respectively the estimates of 𝑥𝑥1 , 𝑥𝑥2  and 𝑥𝑥2̇ ; where (𝑥𝑥1, 𝑥𝑥2) =
(𝑥𝑥11, 𝑥𝑥21) or (𝑥𝑥1, 𝑥𝑥2) = (𝑥𝑥12, 𝑥𝑥22), 𝑥𝑥𝑖̃𝑖 = 𝑥𝑥𝑖̂𝑖 − 𝑥𝑥𝑖𝑖 (𝑖𝑖 = 1,… ,3) is the estimation error of the varia-
ble 𝑥𝑥𝑖𝑖 , 𝜆𝜆0 , 𝜆𝜆1 , and 𝜆𝜆2  are the observer gains, 𝑣𝑣1 = 𝑥𝑥1̃ = 𝑥𝑥1̂ − 𝑥𝑥1 , 𝑣𝑣2 = 𝑥𝑥2̂ − 𝑥𝑥̂1̇  and 𝑣𝑣3 =
𝑥𝑥3̂ − 𝑥𝑥̂2̇. 

We set 

𝑥𝑥̂3̇ = 𝑎𝑎𝜑̅𝜑�𝑥𝑥1̂,𝑥𝑥2̂�, (13) 

where 𝑎𝑎 ̅ represents the vector of nominal values of the vector parameters 𝑎𝑎1 or 𝑎𝑎2. 𝑎𝑎̃ = 𝑎𝑎 − 𝑎𝑎 ̅
is the estimation error of the vector parameters 𝑎𝑎. 

By setting ∇(𝑣𝑣1) = |𝑣𝑣1|2/3  and ∇(𝑣𝑣2) = |𝑣𝑣2|1/2 , we define the functions 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and ∇( ) 
as follows: 

⎩�
⎨
�⎧

 ∇(𝑣𝑣1) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��𝑣𝑣11�
2/3, �𝑣𝑣12�

2/3�
 ∇(𝑣𝑣2) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��𝑣𝑣21�

1/2, �𝑣𝑣22�
1/2�

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑣𝑣1) = [𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑣𝑣𝑖𝑖1), 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑣𝑣𝑖𝑖2)]𝑇𝑇 , 𝑖𝑖 = 1,2,3
. (14) 

The observer defined in the system Equation (12) permits to estimate in real time positions, 
velocities, and accelerations of the system. The jerk of the system is bounded, and it satisfies the 
inequality: 

𝑓𝑓+ ≥ 2|𝑥𝑥1⃛𝑖𝑖|, 𝑖𝑖 = 1,2,3, (15) 

where 𝑓𝑓+ is some known positive scalar. 
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Remark 1. When the accelerations in the mechanical system are bounded, the constant 𝑓𝑓+ can be found 
as the double maximal possible jerk of the system. Moreover, the estimation constant 𝑓𝑓+ does not depend on 
the nominal elasticity or control terms. Such assumption of the state boundedness is true as well, if, for example, 
system (11) is BIBS (Bounded Input, Bounded State) stable, and the control input 𝑢𝑢 = 𝑈𝑈(𝑡𝑡, 𝑥𝑥1, 𝑥𝑥2) is 
bounded. 

The bicycle is a dynamic system with a bounded jerk. The derivative of the measured accel-
erations, namely, the jerk coming from the third derivative of vertical displacement, are per-
formed in order to prove the condition in Equation (15). 

The estimation errors are obtained using Equations (11) and (12) as follows: 

⎩�
⎨
�⎧𝑥𝑥̃1̇ = 𝑥𝑥2 − 𝑥𝑥2̂ + 𝜆𝜆0∇(𝑣𝑣1)𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑣𝑣1)

𝑥𝑥̃2̇ = 𝑥𝑥2̇ − 𝑥𝑥3̂ + 𝜆𝜆1∇(𝑣𝑣2)𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑣𝑣2)
𝑥𝑥̃3̇ = 𝑥𝑥2̈ + 𝜆𝜆2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑣𝑣3)

, (16) 

where 𝑥𝑥2̇ = 𝑀𝑀−1 �𝐹𝐹𝑔𝑔 − 𝐵𝐵(𝑥𝑥1, 𝑥𝑥2)𝑥𝑥2 − 𝐾𝐾(𝑥𝑥1)�. 
Chosen the 𝑖𝑖𝑡𝑡ℎ components of 𝜆𝜆𝑖𝑖

0, 𝜆𝜆𝑖𝑖
1 and 𝜆𝜆𝑖𝑖

2 as: 𝜆𝜆𝑖𝑖
0 = 3

√
𝑓𝑓+3 , 𝜆𝜆𝑖𝑖

1 = 1.2
√

𝑓𝑓+2 , 𝜆𝜆𝑖𝑖
2 =

1.1𝑓𝑓+, the estimation errors 𝑥𝑥1̃, 𝑥𝑥2̃, 𝑥𝑥3̃ converge in finite time 𝑡𝑡0 toward 0. 
Then, after the convergence of the differentiator, the equality 𝑥𝑥̂2̇ = 𝑥𝑥2̇ = 𝑀𝑀−1(𝐹𝐹𝑔𝑔 −

𝐵𝐵(𝑥𝑥1, 𝑥𝑥2)𝑥𝑥2 − 𝐾𝐾(𝑥𝑥1)) holds, and given the equivalence between Equations (11) and (12), the fol-
lowing equality is satisfied: 

𝑀𝑀−1 �𝐹𝐹𝑔𝑔 − 𝐵𝐵(𝑥𝑥1, 𝑥𝑥2)𝑥𝑥2 − 𝐾𝐾(𝑥𝑥1)� − 𝑥𝑥3̂ + 𝜆𝜆1∇(𝑣𝑣2)𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑣𝑣2) = 0. (17) 

The third term of the above-mentioned equality is equal to zero as a result of the differentiator 
convergence, so it is possible to obtain the equivalent output injection as: 

𝑧𝑧𝑒𝑒𝑒𝑒 = 𝑥𝑥3̂ = 𝑀𝑀−1 �𝐹𝐹𝑔𝑔 − 𝐵𝐵(𝑥𝑥1, 𝑥𝑥2)𝑥𝑥2 − 𝐾𝐾(𝑥𝑥1)�. (18) 

In this case, 𝑥𝑥3̂ is a continuous term, and no filtration is required to obtain the equivalent 
output injection. This is an important fact, because given the finite time convergence of the dif-
ferentiator, it’s possible now to reconstruct in finite time the equivalent output injection. Moreo-
ver, the variable 𝑥𝑥3̂ is not affected by any filtration process, hence 𝑥𝑥3̂ is an exact estimation of 
𝑀𝑀−1(𝐹𝐹𝑔𝑔 − 𝐵𝐵(𝑥𝑥1, 𝑥𝑥2)𝑥𝑥2 − 𝐾𝐾(𝑥𝑥1)). 

More details about the convergence study of this observer can be found in [20]. 

4. Parameters Identification Using the Least Squares Method 
In order to identify the parameters, Least Squares Method (LS) is applied using Equation (19): 

𝑧𝑧2 = 𝑥𝑥3̂ = 𝑎𝑎𝜑̃𝜑(𝑥𝑥1, 𝑥𝑥2) = 𝑀𝑀−1 �𝐹𝐹𝑔𝑔 − 𝐵𝐵(𝑥𝑥1, 𝑥𝑥2)𝑥𝑥2 − 𝐾𝐾(𝑥𝑥1)�. (19) 

Considering the unknown parameters vector 𝑎𝑎̃ = 𝑎𝑎 − 𝑎𝑎 ̅ as a constant vector and in order to 
identify it, a linear regression algorithm, namely, the least squares method, is applied [21–23]. 

The time integration is given by: 

1
𝑡𝑡 �𝑧𝑧2(𝜎𝜎)

𝑡𝑡

0

𝜑𝜑(𝜎𝜎)𝑇𝑇 𝑑𝑑𝑑𝑑 = 𝑎𝑎̃ 1𝑡𝑡 �𝜑𝜑(𝜎𝜎)𝜑𝜑(𝜎𝜎)𝑇𝑇 𝑑𝑑𝑑𝑑
𝑡𝑡

0

. (20) 

The vector 𝑎𝑎 ̃ is then estimated by: 

𝑎𝑎̃̂ =
⎣
⎢⎡�𝑧𝑧2(𝜎𝜎)

𝑡𝑡

0

𝜑𝜑(𝜎𝜎)𝑇𝑇 𝑑𝑑𝑑𝑑
⎦
⎥⎤

⎣
⎢⎡� 𝜑𝜑(𝜎𝜎)𝜑𝜑(𝜎𝜎)𝑇𝑇 𝑑𝑑𝑑𝑑

𝑡𝑡

0 ⎦
⎥⎤

−1

, (21) 

where 𝑎𝑎̃ ̂ is the estimation of 𝑎𝑎.̃ 
Let us define Γ = �∫ 𝜑𝜑(𝜎𝜎)𝜑𝜑(𝜎𝜎)𝑇𝑇 𝑑𝑑𝑑𝑑𝑡𝑡

0
�
−1, and its derivative gives Γ̇ = −Γ𝜑𝜑(𝜎𝜎)𝜑𝜑(𝜎𝜎)𝑇𝑇 Γ. The de-

rivative of the vector 𝑎𝑎̃ ̂ using Equation (21) provides: 

𝑎𝑎̃̂̇ =
⎣
⎢⎡�𝑧𝑧2(𝜎𝜎)

𝑡𝑡

0

𝜑𝜑(𝜎𝜎)𝑇𝑇 𝑑𝑑𝑑𝑑
⎦
⎥⎤ Γ̇ + 𝑧𝑧2𝜑𝜑𝑇𝑇 Γ. (22) 

Replacing by its value given before and using Equation (21), it follows: 
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𝑎𝑎̃̂̇ = −𝑎𝑎̃𝜑̂𝜑𝜑𝜑𝑇𝑇 Γ + 𝑧𝑧2𝜑𝜑𝑇𝑇 Γ = �−𝑎𝑎̃𝜑̂𝜑 + 𝑧𝑧2�𝜑𝜑𝑇𝑇 Γ. (23) 

This ensures the asymptotic convergence of 𝑎𝑎̃̂ toward 𝑎𝑎̃ and, therefore, this allows the 
identification of the real value of the vector. 

5. Parameters Identification Using the PSO Method 
The PSO technique is inspired by the flight movement of birds [13,14]. Its iterative algorithm 

is based on a random initialization of a flock of birds, called particles, in the searching space. The 
velocity of each particle is updated at each iteration by considering its inertia and the influence 
of its best position, as well as the best position of the best individual. Naturally, the particle flies 
to the optimal position by following an atypical way. Let 𝜃𝜃 ∈ ℜ4 be the vector of unknown pa-
rameters to be identified, such as: 

𝑥𝑥𝑚𝑚3 = Ψ(𝑥𝑥𝑚𝑚1, 𝑥𝑥𝑚𝑚2, 𝑢𝑢, 𝑢𝑢̇)𝜃𝜃, (24) 

where 𝑥𝑥𝑚𝑚1 ∈ ℜ2, 𝑥𝑥𝑚𝑚2 ∈ ℜ2, and 𝑥𝑥𝑚𝑚3 ∈ ℜ2 represent the position, velocity, and acceleration 
of the model, respectively, approximating the real position 𝑥𝑥1 = [𝑧𝑧𝐹𝐹 , 𝑧𝑧𝑅𝑅]𝑇𝑇 , the real velocity 𝑥𝑥2 =
[𝑧𝑧𝐹̇𝐹 , 𝑧𝑧𝑅̇𝑅]𝑇𝑇  , and the real acceleration 𝑥𝑥3 = [𝑧𝑧𝐹̈𝐹 , 𝑧𝑧𝑅̈𝑅]𝑇𝑇 , respectively; 𝑢𝑢 = [𝑢𝑢𝐹𝐹 , 𝑢𝑢𝑅𝑅]𝑇𝑇  is the input 
road profile, 𝑢𝑢̇ = [𝑢𝑢̇𝐹𝐹 , 𝑢𝑢̇𝑅𝑅]𝑇𝑇  is the derivative of the road profile, 𝜃𝜃 = � 𝑘𝑘𝐹𝐹

𝑚𝑚𝐹𝐹
, 𝐵𝐵𝐹𝐹
𝑚𝑚𝐹𝐹

, 𝑘𝑘𝑅𝑅
𝑚𝑚𝑅𝑅

, 𝐵𝐵𝑅𝑅
𝑚𝑚𝑅𝑅

�
𝑇𝑇  is the 

parameter vector, and Ψ(𝑥𝑥𝑚𝑚1, 𝑥𝑥𝑚𝑚2, 𝑢𝑢, 𝑢𝑢̇) ∈ ℜ2×4 is a regression function based on Equation (1). 
In this section, the PSO is employed to estimate the vector 𝜃𝜃. To carry out this estimation, a 

dataset is required, which is constructed from the variables 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑢𝑢, and 𝑢𝑢̇. These varia-
bles are assumed to be known a priori, meaning their values are available beforehand, typically 
obtained through measurements, simulations, or prior knowledge. The availability of accurate 
and representative data is crucial for ensuring the reliability and convergence of the estimation 
process. 

The main objective is to estimate iteratively the vector 𝜃𝜃 by using the PSO method. Suppose 
that the position and the velocity of the i-th PSO particle are represented by 𝑋𝑋𝑖𝑖 ∈ ℜ4 and 𝑉𝑉𝑖𝑖 ∈
ℜ4, respectively. The purpose of the identification is to calculate the optimal parameters to ensure 
a better fit of the model. This means that the calculated system output approximates the actual 
system output as closely as possible. The closer these two values are, the better the effect of the 
parameter adjustment. In order to ensure this, the fitness of the i-th particle is evaluated accord-
ing to the following quadratic objective function: 

𝐽𝐽𝑖𝑖 = � 𝑒𝑒𝑖𝑖
𝑇𝑇 𝑊𝑊𝑒𝑒𝑖𝑖 𝑑𝑑𝑑𝑑

𝑡𝑡2

𝑡𝑡1

, (25) 

where the elapsed time 𝑡𝑡1 to 𝑡𝑡2 represents the search horizon (𝑡𝑡2 > 𝑡𝑡1 > 0), 𝑊𝑊 ∈ ℜ6×6 is a di-
agonal positive weighting matrix, and the vector 𝑒𝑒𝑖𝑖 ∈ ℜ6 is given by Equation (26): 

𝑒𝑒𝑖𝑖 = �
𝑥𝑥1 − 𝑥𝑥𝑚𝑚1
𝑥𝑥2 − 𝑥𝑥𝑚𝑚2

𝑥𝑥3 − Ψ(𝑥𝑥𝑚𝑚1, 𝑥𝑥𝑚𝑚2, 𝑢𝑢, 𝑢𝑢̇)𝑋𝑋𝑖𝑖

�. (26) 

The objective function 𝐽𝐽𝑖𝑖 is minimum when 𝑋𝑋𝑖𝑖 gets as close as possible to 𝜃𝜃. So, the sys-
tem identification is cast into an optimization problem. The minimization procedure is per-
formed via a PSO as shown below. 

At the initial iteration 𝑘𝑘 = 0 , the particles are initialized with random positions 
{𝑋𝑋10

,… , 𝑋𝑋𝑛𝑛0
} and velocities {𝑉𝑉10

,… , 𝑉𝑉𝑛𝑛0
} in a bounded search space. For each step 𝑘𝑘, the 

best previously visited position (from iteration 0 to 𝑘𝑘) of the i-th particle is noted as its personal 
best position, denoted by 𝑃𝑃𝑖𝑖 ∈ ℜ4 and the position of the optimum individual of the swarm is 
noted as the global best position 𝐺𝐺 ∈ ℜ4. The i-th particle modifies its movement in the search 
space by using the following formulas: 

𝑋𝑋𝑖𝑖𝑘𝑘+1
= 𝑋𝑋𝑖𝑖𝑘𝑘

+ 𝑉𝑉𝑖𝑖𝑘𝑘
, (27) 

and 

𝑉𝑉𝑖𝑖𝑘𝑘+1
= 𝜔𝜔𝑘𝑘𝑉𝑉𝑖𝑖𝑘𝑘

+ 𝑐𝑐1 𝑟𝑟1 �𝑃𝑃𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑘𝑘
� + 𝑐𝑐2 𝑟𝑟2 �𝐺𝐺 − 𝑋𝑋𝑖𝑖𝑘𝑘

�, (28) 

where 𝜔𝜔𝑘𝑘 represents the inertia weight, 𝑟𝑟1, 𝑟𝑟2 ∈ [0,1] are uniformly distributed random varia-
bles and 𝑐𝑐1, 𝑐𝑐2 ∈ ℜ+ are weighting constant factors. 
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Figure 2 illustrates a schematic of the identification technique using the PSO method. The 
“Model” block simulates the dynamics of the bicycle for each individual in the PSO population, 
which represents the parameter vector. The discrepancy between the variable 𝑥𝑥3 and its model 
estimate is used to calculate the optimization error. This error is fed back into the algorithm to 
compute the objective function value. To elaborate further, the PSO method is an evolutionary 
computation technique inspired by the social behavior of birds flocking or fish schooling. It opti-
mizes a problem by iteratively improving candidate solutions with regard to a given measure of 
quality or fitness. In this context, the “Model” block’s role is crucial as it performs simulations 
based on the dynamics of the bicycle for each particle (individual) in the swarm. Each particle 
represents a potential solution characterized by a vector of parameters that define the model’s 
behavior. 

 
Figure 2. Schematic block diagram of parameter identification using the PSO method. 

In the original PSO algorithm [14], the inertial weight 𝜔𝜔𝑘𝑘 does not change and remains 
equal to 1 for ∀𝑘𝑘. In practical applications, the PSO algorithm may pose some problems, such 
as premature convergence and the balancing around the optimal solution. In order to overcome 
those problems, various strategies are given in the literature [15,16,24,25] to improve the choice 
of the inertial weight. In a general manner, the inertial weight should be reduced quickly at the 
beginning of the process and should be slowly reduced around the optimum. In this paper, a 
modified PSO method is proposed by introducing the following strategy of the inertial weight: 

𝜔𝜔𝑘𝑘 = 𝜔𝜔min + 𝛿𝛿𝑘𝑘 (𝜔𝜔max − 𝜔𝜔min), (29) 

where 𝜔𝜔min ∈ ℜ+ and 𝜔𝜔max ∈ ℜ+ are the lower and the upper bounds of the inertial weight, 
respectively, and 𝛿𝛿𝑘𝑘 ∈ [0,1] is a damping factor computed by the following geometric sequence: 

𝛿𝛿𝑘𝑘+1 = 𝜌𝜌 𝛿𝛿𝑘𝑘, (30) 

with 𝛿𝛿0 = 1 and 𝜌𝜌 ∈ [𝜌𝜌min, 𝜌𝜌max] is a uniformly distributed random common ratio such as 0 <
𝜌𝜌min ≤ 𝜌𝜌 ≤ 𝜌𝜌max < 1. 

6. Experimentation 
6.1. Description of the Test Bench 

Experimentation in a real environment is not always the appropriate means, due to its costs, 
bias related to uncontrolled variables, and risks facing cyclists [26,27]. However, in order to val-
idate the theoretical study and the simulation results, an instrumented bicycle is used, as shown 
in Figure 3. The bicycle is equipped with several sensors to measure its dynamics, such as the 
angular speeds, accelerations, and displacements. In addition, as shown in Figure 3, a battery is 
installed in order to supply power to some sensors, and a USB WSDA 200 key is used in order 
to communicate with the other sensors to log data on a PC. Many tests have been conducted 
with the bicycle driving at various speeds on an open road in Stockholm, Sweden. The data 
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collection was carried out at a frequency of 100 Hz. This frequency was chosen to ensure sufficient 
temporal resolution for capturing the dynamic behavior of the bicycle model. Some results on the 
state estimation and parameter identification using the Least Squares method and PSO technic are 
presented in this section. The static vertical forces are measured before the tests. The measured 
static front and rear right vertical forces are respectively 225.63 N and 608.22 N. The dynamic 
parameters of the bicycle are 𝑙𝑙𝐹𝐹  = 0.808 m, 𝑙𝑙𝑅𝑅 = 0.293 m, 𝑚𝑚𝐹𝐹  = 23 kg, and 𝑚𝑚𝑅𝑅 = 63 kg. 

 
Figure 3. The instrumented bicycle used during the experiment. The numbers represent the different 
sensors mounted on the bicycle are described as follows. 1. SG-LINK-200-OEM + Hall Effect Sensor from 
Alliantech was used to count the number of rotations per minute (RPM) for the front wheel in order to 
calculate its angular velocity. The sampling rate was set to 250 Hz. 2. G-link-200 Triaxial accelerometer 
from AlianTeck is a wireless 3-axis accelerometer with ±2 to ±40 g measurement range. The sampling rate 
is up to 4096 Hz. 3. GPS (Global Positioning System): Edge 130 plus from Garmin that includes: GPS, 
GLONASS, and GALILEO systems to detect position in real time. 4. P25 wire-wound potentiometer from 
RS Pro, it is connected with specially designed cogs and attached to the handlebar to measure the steering 
angle. The sampling rate is 100 Hz. 5. Inertial Measurement Unit (IMU) unit+ WLAN “Shell” 4.0 Data 
Logger: from Avisaro, was used as a data logger with a 6 DOF IMU unit (3 axis acceleration/3 axis gyro). 
The IMU sampling rate was set to 100 Hz. 6. OY1P303P0189 laser scanner, from Wenglor, was used for 
the continuous measuring of the distance between the top of the rear seat and the road surface. The 
sampling rate is 30 Hz. 7. K2 powerbank, from PowerOak, was used as a battery to provide power to the 
laser scanner and the data logger. 8. Speed sensor 2, from Garmin, is a wireless sensor that gives longitudinal 
velocity. 9. Vector 3 power meter pedals from Garmin provides dual-sensing on both pedals. 10. Cadence 
sensor 2 from Garmin, was fastened to the left-side crank arm to measure pedal strokes per minute. 

6.2. Experimental Results of the Observation 
In order to identify unknown parameters, the dynamic variables of the bicycle need to be 

estimated in a finite time. In this part, some results on estimation variables done by the sliding 
mode observer (SMO) are shown. 

In Figure 4, estimated and measured vertical displacements are compared. We can then ap-
preciate the quality of the estimation using the SMO technic. In the bottom of Figure 4, the 
vertical speed is also well estimated compared to the measured one with an error close to zero. 
We notice that there is no chattering in this case, compared to the results obtained by using a 
first-order observer. This result is confirmed in Figure 5, where the error is calculated for both 
variables. Indeed, we notice that the maximum error in the vertical displacement is less than 
1 mm. While for the estimation of the vertical speed, the maximum error is less than 0.06 m/s. 

These results are then used in the next section in order to identify the parameters using the 
proposed PSO algorithm and the LS method. 
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Figure 4. Comparison between estimated variables using SMO and measured ones. 

 

 
Figure 5. Estimation error of vertical displacement and speed. 

6.3. Experimental Results of the Identification 
The computational time for the LS method running online is about 1 s. While for PSO 

method runs offline and according to 20 iterations with 30 individuals, the computational time 
is about 45 s using Matlab software. 
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The identified sprung stiffness coefficient and damping using the LS method are equal, re-
spectively, to 110,600 N/m and 1135 N/(m/s). Let us now compare these values to those calcu-
lated by the PSO algorithm. 

Figure 6 shows the results obtained with a population of 30 particles initialized randomly. 
The top curve in this figure illustrates the evolution of the best cost optimization criterion. The 
two lower curves show the evolution of the best positions. It can be seen that the parametric 
convergence is achieved around the tenth iteration. To ensure robustness, 10 different initial 
conditions were tested. Based on the cost function curve, the best test corresponds to trial number 
7. We notice that the identified stiffness, obtained by the best trial number 7, is about 109,364 
Nm, very close to the value identified by the LS method, which is equal to 110,600 Nm. The 
same remark can be given to the damping coefficient identified by the PSO method, which con-
verges to 1234 N/(m/s), very close to the value identified by LS, namely 1135 N/(m/s). 

 
Figure 6. Best cost and best positions 1 and 2. 

The parameters identified using the LS method and PSO technique, tested with 10 different 
initial conditions, are compared in Figure 7. We notice that the identified stiffness is about 
106,320 Nm, very close to the value identified by the LS method, which is equal to 110,600 Nm. 
The same remark can be given to the damping coefficient identified by the PSO method, which 
converges to 120,767 N/(m/s), very close to the value identified by LS, namely 1135 N/(m/s). 
The identification results obtained with both techniques are consistent, demonstrating the solidity 
and reliability of both approaches. Each method, LS and PSO, has its advantages: LS is favored 
for its simplicity and efficiency in handling linear data, while PSO excels in solving complex and 
nonlinear problems. Both methods produce aligned results, indicating the robustness of the iden-
tification process. The observed variations in values are likely due to variable conditions and 
parameters in the experiments, influenced by factors such as environmental influences, measure-
ment precision, and specific experimental setup variations. Fluctuations in temperature, electro-
magnetic interference, or voltage variations can affect measurements. Additionally, the precision 
of measurement instruments and the positioning of sensors play a crucial role in the accuracy of 
the results. In summary, although the main results remain reliable and robust, the exact values 
reflect the nuances of the experimental conditions, highlighting the importance of controlling 
and documenting these conditions for precise interpretation of the results. This comparative 
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analysis between LS and PSO highlights the complementarity of the two techniques and their 
applicability in different experimental contexts, thereby reinforcing confidence in the processes 
of parameter identification and analysis. 

 

 
Figure 7. The identified parameters using the LS and PSO methods. 

The identified parameters have been used in the model and in the observer defined in Equa-
tion (12). The measured vertical displacement is compared to those estimated by the LS and PSO 
methods by using the respective identified parameters. 

The results of Figure 8 show the convergence of the two methods, where the vertical displace-
ment has been estimated with success, with an error close to zero. This important result confirms 
that the identified parameters obtained by using LS and PSO are reliable. The measured vertical 
speed is also compared to those estimated by the LS and PSO methods by using the respective 
identified parameters. The result of this comparison is shown in Figure 9. We remark that by 
using the parameters identified by both methods, velocity has been well estimated, in finite time 
and without chattering, compared to the measured one. This is an important and reliable result 
which proves the accuracy of the identification techniques developed in this paper. 

 
Figure 8. Measured vertical displacement compared to those estimated by the LS and PSO methods. 
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Figure 9. Measured vertical speed compared to those estimated by LS and PSO. 

Figure 10 presents the comparison between the measured vertical acceleration and the esti-
mates obtained using the LS and PSO methods, based on their respective identified parameters. 
Both methods accurately estimate the acceleration. These results validate the effectiveness and 
precision of the identification techniques proposed in this study. 

 

 
Figure 10. Measured vertical acceleration compared to those estimated by LS and PSO. 
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PSO at 8.947 × 10−5 m/s. This indicates that both methods provide very close estimations 
for the position with minimal discrepancies. 

• For velocity, the maximum absolute error is slightly higher for LS (1.286 m/s) compared 
to PSO (1.273 m/s). The mean square error also shows a similar pattern, with LS having 
a value of 13.561 × 10−3 m/s² and PSO at 12.895 × 10−3 m/s². While both methods 
perform well, PSO appears to offer slightly more accurate results in velocity estimation. 

• For acceleration, LS shows a higher maximum absolute error (80.242 m/s²) compared to 
PSO (79.999 m/s²). The mean square errors also reflect this difference, with LS at 70.854 
m²/s and PSO at 67.700 m²/s. Again, PSO outperforms LS in terms of accuracy for 
acceleration estimation, with smaller errors in both the maximum absolute and mean 
square error. 

Overall, the PSO method demonstrates a slightly better performance than the LS method in 
all three parameters (position, velocity, and acceleration), with smaller errors in both maximum 
absolute and mean square error. However, the differences are minimal, suggesting that both 
methods provide reliable and accurate estimations for the system under study. 

Table 1. Statistical comparison of the estimation errors. 

 Position (m) Velocity (m/s) Acceleration (m/s²) 
Estimation 

method 
Maximum  

absolute error 
Mean  

square error 
Maximum  

absolute error 
Mean  

square error 
Maximum  

absolute error 
Mean  

square error 
LS 39.531 × 10−3 8.949 × 10−5 1.286 13.561 × 10−3 80.242 70.854 

PSO 39.084 × 10−3 8.947 ×10−5 1.273 12.895 × 10−3 79.999 67.700 

The results show that the PSO algorithm is a powerful technique. It can be used in real situ-
ations, even in the presence of noise measurement. The comparison given with the PSO algo-
rithm and the LS method shows the efficiency of the proposed PSO method. 

7. Conclusion 
In this paper, parameters of a bicycle are identified using a modified PSO method combined 

with an HOSM observer to estimate in finite time the dynamic variables vector. We have shown 
in the presented results that after the real-time convergence of the vertical position, velocity, and 
acceleration of the bicycle using HOSM, the PSO technique was able to identify the stiffness 
coefficient and damping. Indeed, the comparison between measured variables from sensors and 
estimated variables demonstrates the robustness of the observer, as well as the effectiveness of the 
estimation. The quality of identification using the proposed PSO is also evaluated by comparing 
its results to those obtained from the Least Squares Method. This comparison shows the conver-
gence of these two methods with errors close to zero, as proved in the statistical study. In future 
work, as mentioned in the introduction and bicycle modelling part, other parameters need to be 
identified for better convergence of the model. This can be possible by using the two approaches 
developed in this paper. The goal will also be to increase the robustness of the validation of the 
entire dynamic model of the bicycle. In this case, the lateral model part will be developed in order 
to identify cornering stiffness coefficients. 
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