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Abstract This paper presents a methodology for freight traffic assignment in a large-scale road-
rail intermodal network under uncertainty. Network uncertainties caused by natural disasters 
have dramatically increased in recent years. Several of these disasters (e.g., Hurricane Sandy, 
Mississippi River Flooding, and Hurricane Harvey) severely disrupted the U.S. freight transpor-
tation network, and consequently, the supply chain. To account for these network uncertainties, 
a stochastic freight traffic assignment model is formulated. An algorithmic framework, involving 
the sample average approximation and gradient projection algorithm, is proposed to solve this 
challenging problem. The developed methodology is tested on the U.S. intermodal network with 
freight flow data from the Freight Analysis Framework. The experiments consider three types of 
natural disasters that have different risks and impacts on transportation networks: earthquakes, 
hurricanes, and floods. It is found that for all disaster scenarios, freight ton-miles are higher com-
pared to the base case without uncertainty. The increase in freight ton-miles is the highest under 
the flooding scenario; this is because there are more states in the flood-risk areas, and they are 
scattered throughout the U.S. 

Keywords freight assignment; intermodal freight transport; road-rail intermodal; network 
uncertainty; stochastic programming; sample average approximation 

 
 

1. Introduction 
Efficient management of freight movements is essential to support domestic e-commerce and 

international trade. Freight activities are directly related to a country’s Gross Domestic Product 
and economic viability. In recent years, the U.S. transportation system has supported a growing 
volume of freight, and it is anticipated that this trend will continue in the coming years. For 
example, the U.S. transportation system moved a daily average of about 53.6 million tons of 
freight valued at more than $54 billion in 2021. Freight tonnage is projected to increase by about 
43% between 2023 and 2050 [1]. To support the projected increase in freight volume, an effi-
cient, reliable, and low-cost freight logistics system is necessary to keep the U.S. competitive in 
the global market. 

Current freight forecasting methodologies assume that the transportation network is always 
functioning and is never disrupted (e.g., [2,3]). Hwang & Ouyang [2] provided a framework for 
freight train traffic assignment in a network where the network links (i.e., rail tracks) are always 
available. Uddin & Huynh [3] provided a methodology for road-rail freight traffic assignment in 
an intermodal network which considered that the network elements are never disrupted. The 
assumptions were made by the authors to simplify the scope of the studies and were appropriate 
for the problems addressed in those studies. Those studies did not consider the risks from 
weather-induced disruptions which have dramatically increased in recent years; several have 
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occurred recently that severely affected the U.S. freight transportation network. The Mississippi 
River flooding impacted a major freight route, I-40 in Arkansas in 2011. Tropical storm Irene 
caused damage to over 5000 miles of highways and 34 bridges in Vermont in 2011. Hurricane 
Sandy caused billions of dollars in damage and severely flooded streets and tunnels in the New 
York and New Jersey region in 2011 [4]. In 2018, flooding from Hurricane Florence caused the 
closure of more than 200 roads in South Carolina and more than 600 roads in North Carolina, 
including several stretches of I-95, which is a major freight route along the Eastern seaboard [5]. 
In 2022, the U.S. endured 18 separate weather-related disasters with losses exceeding $9 billion 
each, with a total cost of about $171 billion [6]. Given the growing occurrence of such disasters 
and their impact on the freight transportation network, there is a need to develop freight fore-
casting methods that address network uncertainties caused by natural disasters. 

To this end, this paper proposes a stochastic model for the assignment of freight traffic, con-
sidering road, rail, and intermodal shipments, on a road-rail intermodal network that is subject 
to uncertainty. Intermodal transportation is defined as the use of at least two modes (e.g., road 
and rail) to move freight shipments in intermodal containers from an origin to a destination. 
Given the exact evaluation of the stochastic model is difficult, an algorithmic framework is pro-
posed for solving the model. To account for uncertainties in a realistic manner, the U.S. natural 
disaster risk map [7] is used. The disaster types considered are earthquakes, hurricanes, and 
floods. For each disaster scenario, the model seeks an equilibrium assignment for a given set of 
freight traffic demands between origins and destinations and available modes (road-only, rail-
only, and intermodal). A comparative analysis of different disaster scenarios is performed to assess 
their impacts on the resulting freight flows. 

2. Literature Review 
In this section, published literature is explored in terms of freight flows and routing models, 

and solution approaches that are particularly relevant to the methodology proposed in this paper. 

2.1. Freight Assignment and Routing Models 
Considering the vulnerability of the transportation network, the models for freight flows and 

routing can be classified into two categories: models under normal conditions (i.e., without dis-
ruptions) and models under disruptions. In the following subsections, the scope and key charac-
teristics of these mathematical models are discussed. 

2.1.1. Models Under Normal Conditions 
The majority of researchers used mathematical programs that seek to minimize the cost of 

freight flows under normal conditions. These studies focused on freight flows in intermodal/mul-
timodal networks [3,8,9], freight routing in rail [10] and intermodal networks [11], and optimally 
locating intermodal terminals [12] or hub locations in a capacitated network [13]. Besides cost-
minimization models, a few models seek to minimize the travel time of freight flow. Hwang & 
Ouyang [2] developed a model that minimizes the railroad travel time under user equilibrium 
taking into account shipper and carriers’ route choices. Chang [14] formulated a multi-objective 
multimodal multicommodity flow problem with time windows and concave costs. A few re-
searchers used a simulation-assignment approach to capture the operational issues such as delays 
at terminals and yards, and technological and policy changes [15]. Validation of this approach 
is achieved by applying it to a large-scale rail network [16]. 

Researchers also developed freight flow models to find investment priorities for new estab-
lishment and/or improvement of existing infrastructure in multimodal/intermodal networks 
[17,18]. In the freight rail transportation network, researchers explored the level of service in 
terms of loaded and empty freight flow, yard operations, and capacity constraints [19]. Other 
researchers presented models to incorporate shipper-carrier roles and interactions. Friesz et al. 
[8] developed a model that considered the role of both shipper and carrier in freight assignment. 
Lastly, Agrawal & Ziliaskopoulous [20] used Variational Inequality to incorporate the market 
equilibrium from the shippers’ perspective. 

2.1.2. Models Under Disruptions 
All the aforementioned studies assume that the freight transport network is always functioning 

and is never disrupted. Researchers developed mathematical formulation for freight assignment, 
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routing, investment priorities, and network resilience incorporating disruption in their model to 
tackle network vulnerability. Routing-based models are formulated for uncapacitated and capac-
itated networks, survivability of flow network under multiple arc failures [21], rerouting of coal 
by rail under disruption [22], and routing intermodal freight under disruption scenarios [23], 
hazmat transportation with random yard disruptions [24], and routing with carbon dioxide emis-
sions consideration [25]. 

Some researchers have studied the resilience of freight transportation networks. Resiliency of 
a network is quantified as the ability to recover from disruption by preventing, absorbing, and 
mitigating its effect [26]. The quantification of the resilience of intermodal freight transportation 
is implemented using an unsatisfied demand parameter [27] and pathway resistance function in 
a time-variant multi-scale network [28]. Decision models are presented to reroute freight flows 
when a delay on a link exceeds a tolerance limit [29], for pre-disruption preparation and post-
disruption recovery activities within a budget [30], for reliable multi-commodity routing in an 
intermodal road-rail network [31], reliable rail intermodal transport network [32], and robust 
model for rail-truck intermodal transportation network with random disruptions at intermodal 
yards [33]. Frameworks are also developed for quantifying the resilience of intermodal freight 
networks under extreme events such as natural disasters including seismic events [34,35]. 

2.2. Solution Approach to Models 
The majority of mathematical programs with or without consideration of disruption used 

either exact or heuristic methods as their solution approach. Apart from these two methods, Ev-
ans algorithm [8], Gauss-Seidal Linear Approximation [9], Diagonalization [19], modified con-
vex combination [2], and modified gradient projection algorithms [3] are used in solving assign-
ment models under normal conditions. On the other hand, models under disruption considera-
tion used improved Depth First Search [29], and Sample Average Approximation [23] for rout-
ing; Benders Decomposition, column generation, Monte Carlo simulation [27], and Integer L-
shaped [30] algorithm for resilience models. 

The above studies focused on achieving cost-effectiveness, time-saving, and operational effi-
ciency under prevailing normal conditions. However, freight assignment and routing models 
should incorporate uncertainties due to natural and man-made disruptions. A few freight routing 
models address the uncertainties from disruptions but to date, no model has been developed to 
comprehensively assign freight flows in an intermodal freight network under equilibrium condi-
tions with consideration for disruptions. This study seeks to fill this gap in the literature by (a) 
proposing a new model for freight flow assignment in rail-road intermodal networks under dis-
ruptions, (b) developing a framework to solve the proposed model, and (c) verifying and demon-
strating the scalability of the model by applying it to an actual large-scale intermodal freight 
network. 

3. Model Formulation 
This study assumes that in the long run, the activities carried out by shippers and carriers will 

be in equilibrium. That means the cost of any shipment cannot be lowered by changing mode, 
route, or both. Additionally, it is assumed that the cost on all used paths via different modes 
(road-only, rail-only, and intermodal) is equal for each origin-destination (O-D) pair and equal 
to or less than the cost on any unused path at equilibrium [36]. 

The model formulation assumes that a road-rail intermodal freight transportation network is 
represented by a directed graph 𝒢𝒢 = (𝒩𝒩, 𝒜𝒜), where 𝒩𝒩 is the set of nodes and 𝒜𝒜 is the set 
of links joining them in the network. Set 𝒩𝒩 consists of the set of freight zone centroid nodes 
𝒩𝒩𝑐𝑐, the set of road intersections 𝒩𝒩𝑡𝑡, and the set of rail junctions 𝒩𝒩𝑙𝑙, that is, 𝒩𝒩 = 𝒩𝒩𝑐𝑐 ∪ 𝒩𝒩𝑡𝑡 ∪
𝒩𝒩𝑙𝑙. Set 𝒜𝒜 consists of the set of road segment 𝒜𝒜𝑡𝑡, the set of rail tracks 𝒜𝒜𝑙𝑙, and the set of ter-
minal transfer links 𝒜𝒜𝑓𝑓 , that is, 𝒜𝒜 = 𝒜𝒜𝑡𝑡 ∪ 𝒜𝒜𝑙𝑙 ∪ 𝒜𝒜𝑓𝑓 . The road-rail intermodal terminals are 
modeled as network links. The flows are bi-directional on the terminal links. The end nodes of 
terminals have different nodes, that is, one from the set 𝒩𝒩𝑡𝑡 and the other from the set 𝒩𝒩𝑙𝑙. 
Origin and destination sets are represented by 𝒪𝒪 ⊆ 𝒩𝒩 and 𝒟𝒟 ⊆ 𝒩𝒩, respectively. Table 1 
summarizes the notations used in the model and Figure 1 presents a hypothetical road-rail inter-
modal freight transportation network. 

The capacity of each network link 𝑎𝑎 ∈ 𝒜𝒜 is disruption-scenario dependent, that is, capaci-
ties will be different depending on disruption-scenario sample 𝜉𝜉 ∈ 𝛯𝛯. A decision variable 𝑥𝑥𝑎𝑎𝑎𝑎 
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is defined to represent the assigned freight flow on link 𝑎𝑎 ∈ 𝒜𝒜 under disruption-scenario sample 
𝜉𝜉 ∈ 𝛯𝛯. Typically, rail tracks are shared by train in both directions. For that reason, the link delay 
on any rail track is dependent on the flow on it as well as the flow on the opposite rail track. In 
the following model, for train flow, 𝑥𝑥𝑎𝑎𝑎𝑎 represents the flow from node 𝑖𝑖 ∈ 𝒩𝒩𝑙𝑙 to node 𝑗𝑗 ∈
𝒩𝒩𝑙𝑙, and 𝑥𝑥𝑎𝑎′𝜉𝜉 represents the flow from node 𝑗𝑗 ∈ 𝒩𝒩𝑙𝑙 to node 𝑖𝑖 ∈ 𝒩𝒩𝑙𝑙. 

Table 1. Mathematical Notation. 

Notation Description 

𝒩𝒩 set of nodes in network 

𝒜𝒜 set of links in network 

𝒩𝒩𝑐𝑐 set of freight zone centroid nodes in network 

𝒩𝒩𝑡𝑡 set of road intersections in network 

𝒩𝒩𝑙𝑙 set of rail junctions in network 

𝒜𝒜𝑡𝑡 set of road segments in network 

𝒜𝒜𝑙𝑙 set of rail tracks in network 

𝒜𝒜𝑓𝑓 set of terminal transfer links in network 

𝒪𝒪 set of origins in network, 𝒪𝒪 ⊆ 𝒩𝒩 

𝒟𝒟 set of destinations in network, 𝒟𝒟 ⊆ 𝒩𝒩 

𝑇𝑇  set of available intermodal terminals for transfer of shipments 

𝑜𝑜 origin zone index, 𝑜𝑜 ∈ 𝒪𝒪 

𝑑𝑑 destination zone index, 𝑑𝑑 ∈ 𝒟𝒟 

𝐾𝐾𝑡𝑡
𝑜𝑜𝑜𝑜 set of paths with positive truck flow from 𝑜𝑜 to 𝑑𝑑 

𝐾𝐾𝑙𝑙
𝑜𝑜𝑜𝑜 set of paths with positive train flow from 𝑜𝑜 to 𝑑𝑑 

𝐾𝐾𝑖𝑖
𝑜𝑜𝑜𝑜 set of paths with positive intermodal flow from 𝑜𝑜 to 𝑑𝑑 

𝑞𝑞𝑡𝑡
𝑜𝑜𝑜𝑜 freight truck demand from 𝑜𝑜 to 𝑑𝑑 

𝑞𝑞𝑙𝑙
𝑜𝑜𝑜𝑜 freight train demand from 𝑜𝑜 to 𝑑𝑑 

𝑞𝑞𝑖𝑖
𝑜𝑜𝑜𝑜 freight intermodal demand from 𝑜𝑜 to 𝑑𝑑 

𝛯𝛯 set of disruption-scenario samples 

𝜉𝜉 a disruption-scenario sample, 𝜉𝜉 ∈ 𝛯𝛯 

𝑓𝑓𝑘𝑘𝑘𝑘
𝑜𝑜𝑜𝑜 flow on path 𝑘𝑘 connecting 𝑜𝑜 and 𝑑𝑑 under disruption-scenario sample 𝜉𝜉 

𝑥𝑥𝑎𝑎𝑎𝑎 flow on link 𝑎𝑎 ∈ 𝒜𝒜 under disruption-scenario sample 𝜉𝜉 

𝐶𝐶𝑎𝑎𝑎𝑎 capacity of link 𝑎𝑎 ∈ 𝒜𝒜 under disruption-scenario sample 𝜉𝜉 

𝑡𝑡𝑎𝑎𝑎𝑎(𝜔𝜔) travel time on link 𝑎𝑎 ∈ 𝒜𝒜 for flow of 𝜔𝜔 under disruption-scenario sample 𝜉𝜉 

 

 
Figure 1. Hypothetical network. 

For freight truck demand 𝑞𝑞𝑡𝑡
𝑜𝑜𝑜𝑜 from origin 𝑜𝑜 ∈ 𝒪𝒪 to destination 𝑑𝑑 ∈ 𝒟𝒟 and a set of paths 

𝐾𝐾𝑡𝑡
𝑜𝑜𝑜𝑜 that connect 𝑜𝑜 to 𝑑𝑑 for each O-D pair, the path flow 𝑓𝑓𝑘𝑘𝑘𝑘

𝑜𝑜𝑜𝑜 satisfies the demand under 

disruption-scenario sample 𝜉𝜉 ∈ 𝛯𝛯 �∑ 𝑓𝑓𝑘𝑘𝑘𝑘
𝑜𝑜𝑜𝑜 = 𝑞𝑞𝑡𝑡

𝑜𝑜𝑜𝑜
𝑘𝑘∈𝐾𝐾𝑡𝑡

𝑜𝑜𝑜𝑜 �. Similarly, the path flows for freight 

trains and intermodal on path sets 𝐾𝐾𝑙𝑙
𝑜𝑜𝑜𝑜 and 𝐾𝐾𝑖𝑖

𝑜𝑜𝑜𝑜 satisfy their respective demands (𝑞𝑞𝑙𝑙
𝑜𝑜𝑜𝑜 and 

𝑞𝑞𝑖𝑖
𝑜𝑜𝑜𝑜) from 𝑜𝑜 to 𝑑𝑑 under disruption-scenario sample 𝜉𝜉. Since the intermodal path set consists 

of paths formed by links from both road segments and rail tracks, the total freight flow on a road 
segment (𝑎𝑎 ∈ 𝒜𝒜𝑡𝑡) is the sum of the road-only flows and the intermodal flows. Similarly, the total 
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freight flow on a rail track (𝑎𝑎 ∈ 𝒜𝒜𝑙𝑙) is the sum of the rail-only flows and intermodal flows. Using 
the parameters and decision variables described above, the following stochastic model finds the 
equilibrium freight flows in a road-rail intermodal network. 

Min 𝔼𝔼𝜉𝜉 � � � 𝑡𝑡𝑎𝑎𝑎𝑎(𝜔𝜔) 𝑑𝑑𝑑𝑑
𝑥𝑥𝑎𝑎𝑎𝑎

0𝑎𝑎 ∈ 𝒜𝒜𝑡𝑡

+ � � 𝑡𝑡𝑎𝑎𝑎𝑎(𝜔𝜔) 𝑑𝑑𝑑𝑑
𝑥𝑥𝑎𝑎𝑎𝑎+𝑥𝑥𝑎𝑎′𝜉𝜉

0𝑎𝑎 ∈ 𝒜𝒜𝑙𝑙

� (1) 

Subject to 

� 𝑓𝑓𝑘𝑘𝑘𝑘
𝑜𝑜𝑜𝑜 = 𝑞𝑞𝑡𝑡

𝑜𝑜𝑜𝑜

𝑘𝑘∈𝐾𝐾𝑡𝑡
𝑜𝑜𝑜𝑜

,  ∀ 𝑜𝑜 ∈ 𝒪𝒪,  𝑑𝑑 ∈ 𝒟𝒟,  𝜉𝜉 ∈ 𝛯𝛯 (2) 

� 𝑓𝑓𝑘𝑘𝑘𝑘
𝑜𝑜𝑜𝑜 = 𝑞𝑞𝑙𝑙

𝑜𝑜𝑜𝑜

𝑘𝑘∈𝐾𝐾𝑙𝑙
𝑜𝑜𝑜𝑜

,  ∀ 𝑜𝑜 ∈ 𝒪𝒪,  𝑑𝑑 ∈ 𝒟𝒟,  𝜉𝜉 ∈ 𝛯𝛯 (3) 

� 𝑓𝑓𝑘𝑘𝑘𝑘
𝑜𝑜𝑜𝑜 = 𝑞𝑞𝑖𝑖

𝑜𝑜𝑜𝑜

𝑘𝑘∈𝐾𝐾𝑖𝑖
𝑜𝑜𝑜𝑜

,  ∀ 𝑜𝑜 ∈ 𝒪𝒪,  𝑑𝑑 ∈ 𝒟𝒟,  𝜉𝜉 ∈ 𝛯𝛯 (4) 

𝑥𝑥𝑎𝑎𝑎𝑎 = � � � 𝑓𝑓𝑘𝑘𝑘𝑘
𝑜𝑜𝑜𝑜𝛿𝛿𝑘𝑘𝑘𝑘

𝑜𝑜𝑜𝑜

𝑘𝑘∈𝐾𝐾𝑡𝑡
𝑜𝑜𝑜𝑜𝑑𝑑∈𝒟𝒟𝑜𝑜∈𝒪𝒪

+ � � � 𝑓𝑓𝑘𝑘𝑘𝑘
𝑜𝑜𝑜𝑜𝛿𝛿𝑘𝑘𝑘𝑘

𝑜𝑜𝑜𝑜

𝑘𝑘∈𝐾𝐾𝑖𝑖
𝑜𝑜𝑜𝑜𝑑𝑑∈𝒟𝒟𝑜𝑜∈𝒪𝒪

, ∀ 𝑎𝑎 ∈ 𝒜𝒜𝑡𝑡,  𝜉𝜉 ∈ 𝛯𝛯 (5) 

𝑥𝑥𝑎𝑎𝑎𝑎 = � � � 𝑓𝑓𝑘𝑘𝑘𝑘
𝑜𝑜𝑜𝑜𝛿𝛿𝑘𝑘𝑘𝑘

𝑜𝑜𝑜𝑜

𝑘𝑘∈𝐾𝐾𝑙𝑙
𝑜𝑜𝑜𝑜𝑑𝑑∈𝒟𝒟𝑜𝑜∈𝒪𝒪

+ � � � 𝑓𝑓𝑘𝑘𝑘𝑘
𝑜𝑜𝑜𝑜𝛿𝛿𝑘𝑘𝑘𝑘

𝑜𝑜𝑜𝑜

𝑘𝑘∈𝐾𝐾𝑖𝑖
𝑜𝑜𝑜𝑜𝑑𝑑∈𝒟𝒟𝑜𝑜∈𝒪𝒪

, ∀ 𝑎𝑎 ∈ 𝒜𝒜𝑙𝑙,  𝜉𝜉 ∈ 𝛯𝛯 (6) 

𝑓𝑓𝑘𝑘𝑘𝑘
𝑜𝑜𝑜𝑜 ≥ 0, ∀ 𝑘𝑘 ∈ 𝐾𝐾𝑡𝑡

𝑜𝑜𝑜𝑜,  𝑘𝑘 ∈ 𝐾𝐾𝑙𝑙
𝑜𝑜𝑜𝑜,  𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖

𝑜𝑜𝑜𝑜,  𝑜𝑜 ∈ 𝒪𝒪,  𝑑𝑑 ∈ 𝒟𝒟,  𝜉𝜉 ∈ 𝛯𝛯 (7) 

where 

𝛿𝛿𝑘𝑘𝑘𝑘
𝑜𝑜𝑜𝑜 = �1 if link 𝑎𝑎 is on path 𝑘𝑘 connecting 𝑜𝑜 and 𝑑𝑑

0 otherwise
  

Constraints (2)–(4) ensure that all freight demands are assigned to the network. Constraints 
(5) and (6) compute the link flows on road and rail segments, respectively. Lastly, constraint (7) 
enforces all flow to be nonnegative. To estimate the objective function value in Equation (1), 
travel time on road and rail segments as a function of the flow are needed. For the road travel 
time, the Bureau of Public Roads (BPR) link performance function is used. The BPR function is 
considered given that it is most widely used. However, other performance functions could be 
used in conjunction with the model. The overall model output pattern would be the same for any 
specification for performance function. For rail travel time, the link performance function pro-
posed by Uddin & Huynh [3] is used. The link performance functions have the following form: 

𝑡𝑡𝑎𝑎𝑎𝑎�𝑥𝑥𝑎𝑎𝑎𝑎� = 𝑡𝑡0,𝑡𝑡 �1 + 0.15�
𝑥𝑥𝑎𝑎𝑎𝑎

𝐶𝐶𝑎𝑎𝑎𝑎
�

4
� , ∀ 𝑎𝑎 ∈ 𝒜𝒜𝑡𝑡,  𝜉𝜉 ∈ 𝛯𝛯 (8) 

𝑡𝑡𝑎𝑎𝑎𝑎�𝑥𝑥𝑎𝑎𝑎𝑎 + 𝑥𝑥𝑎𝑎′𝜉𝜉� = 𝑡𝑡0,𝑙𝑙 �1 + �
𝑥𝑥𝑎𝑎𝑎𝑎 + 𝑥𝑥𝑎𝑎′𝜉𝜉

𝐶𝐶𝑎𝑎𝑎𝑎
�

4
� , ∀ 𝑎𝑎 ∈ 𝒜𝒜𝑙𝑙,  𝜉𝜉 ∈ 𝛯𝛯 (9) 

𝑡𝑡0,𝑡𝑡 and 𝑡𝑡0,𝑙𝑙 are the free-flow travel time for road and rail links, respectively. 𝐶𝐶𝑎𝑎𝑎𝑎 is the ca-
pacity of the link 𝑎𝑎 under disruption-scenario sample 𝜉𝜉. 

4. Algorithmic Strategy 
The proposed model (1)–(7) is a stochastic program, which is difficult to solve because of the 

need to evaluate the expectation in the objective function. One approach is to approximate the 
expected value through sample averaging [23,37]. This approach is known as sample average 
approximation (SAA). In this study, the SAA algorithm proposed by Santoso et al. [37] is 
adopted. The SAA method is an approach for solving stochastic optimization problems by using 
Monte Carlo simulation. There are several advantages to using this method. The method can be 
applied to many stochastic optimization problems. It also has desirable convergence properties 
[38]. The objective function of the model (Equation (1)) can be rewritten as follows, without loss 
of generality, where 𝑦𝑦 represents the decision variable. 

Min 𝔼𝔼𝜉𝜉[𝒬𝒬(𝑦𝑦, 𝜉𝜉)] (10) 
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4.1. The SAA Algorithm 
Step 1 
Generate 𝑀𝑀  independent disruption-scenario samples each of size 𝑁𝑁 , i.e., 𝜉𝜉𝑚𝑚

1 , . . . , 𝜉𝜉𝑚𝑚
𝑁𝑁  

for 𝑚𝑚 = 1, . . . , 𝑀𝑀 . For each sample, solve the corresponding SAA problem. 

Min 
1
𝑁𝑁

� 𝒬𝒬(𝑦𝑦, 𝜉𝜉𝑚𝑚
𝑛𝑛 )

𝑁𝑁

𝑛𝑛=1
 (11) 

Let 𝑧𝑧𝑁𝑁
𝑚𝑚 and 𝑦𝑦𝑁̂𝑁

𝑚𝑚, 𝑚𝑚 = 1, . . . , 𝑀𝑀 , be the corresponding optimal objective value and an op-
timal solution, respectively. 

Step 2 
Compute the following two values. 

𝑧𝑧𝑁̄𝑁,𝑀𝑀:=
1
𝑀𝑀

� 𝑧𝑧𝑁𝑁
𝑚𝑚

𝑀𝑀

𝑚𝑚=1
   (12) 

𝜎𝜎𝑧𝑧𝑁̄𝑁,𝑀𝑀
2 : =

1
(𝑀𝑀 − 1)𝑀𝑀

��𝑧𝑧𝑁𝑁
𝑚𝑚 − 𝑧𝑧𝑁̄𝑁,𝑀𝑀�2

𝑀𝑀

𝑚𝑚=1
 (13) 

The expected value of 𝑧𝑧𝑁𝑁  is less than or equal to the optimal value 𝑧𝑧∗ of the true problem 
[37]. Thus, 𝑧𝑧𝑁̄𝑁,𝑀𝑀  provides a lower statistical bound for the optimal value 𝑧𝑧∗ of the true prob-
lem, and 𝜎𝜎𝑧𝑧𝑁̄𝑁,𝑀𝑀

2  is an estimate of the variance of this estimator. 

Step 3 
Choose a feasible solution 𝑦𝑦 ̃ from the above-computed solutions 𝑦𝑦𝑁̂𝑁

𝑚𝑚, and generate another 
𝑁𝑁′ independent disruption-scenario sample, i.e., 𝜉𝜉1, . . . , 𝜉𝜉𝑁𝑁′ . Then estimate the true objective 
function value 𝑧𝑧𝑁̃𝑁′(𝑦𝑦)̃ and variance of this estimator as follows. 

𝑧𝑧𝑁̃𝑁′(𝑦𝑦)̃: =
1

𝑁𝑁′ � 𝒬𝒬(𝑦𝑦,̃ 𝜉𝜉𝑛𝑛)
𝑁𝑁′

𝑛𝑛=1
 (14) 

𝜎𝜎𝑁𝑁′
2 (𝑦𝑦)̃: =

1
(𝑁𝑁′ − 1)𝑁𝑁′ �[𝒬𝒬(𝑦𝑦,̃ 𝜉𝜉𝑛𝑛) − 𝑧𝑧𝑁̃𝑁′(𝑦𝑦)̃]2

𝑁𝑁′

𝑛𝑛=1
 (15) 

Typically, 𝑁𝑁′ is much larger than the sample size 𝑁𝑁  used in solving the SAA problems. 
𝑧𝑧𝑁̃𝑁′(𝑦𝑦)̃ is an unbiased estimator of 𝑧𝑧(𝑦𝑦)̃. Also, 𝑧𝑧𝑁̃𝑁′(𝑦𝑦)̃ is an estimate of the upper bound on 
𝑧𝑧∗. 

Step 4 
Compute an estimate of the optimality gap of the solution 𝑦𝑦 ̃ using the lower bound estimate 

and the objective function value estimate from Steps 2 and 3, respectively, using the equation 
below: 

gap𝑁𝑁,𝑀𝑀,𝑁𝑁′(𝑦𝑦)̃: = 𝑧𝑧𝑁̃𝑁′(𝑦𝑦)̃ − 𝑧𝑧𝑁̄𝑁,𝑀𝑀 (16) 

The estimated variance of the above gap estimator is then given by 

𝜎𝜎gap
2 = 𝜎𝜎𝑁𝑁′

2 (𝑦𝑦)̃ + 𝜎𝜎𝑧𝑧𝑁̄𝑁,𝑀𝑀
2  (17) 

4.2. Gradient Projection Algorithm 
The SAA problem in Equation (11) is the standard traffic assignment problem, which cannot 

be solved analytically. This study adopts the path-based algorithm (gradient projection) proposed 
by Uddin & Huynh [3] to solve the traffic assignment problem. The gradient projection (GP) 
algorithm was first used by Jayakrishnan et al. [39] to solve the traffic assignment problem. Uddin 
& Huynh [3] further modified the GP algorithm to consider the situation where freight traffic 
demands could be transported via one of three modes (road-only, rail-only, and intermodal). 
Their GP algorithm also considered intermodal terminals in the network. The adopted GP algo-
rithm has the following iterative steps for a specific disruption-scenario sample 𝜉𝜉. 
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Step 0 (Initialization) 
Set 𝑡𝑡𝑎𝑎𝑎𝑎 = 𝑡𝑡𝑎𝑎𝑎𝑎(0), ∀𝑎𝑎 ∈ 𝒜𝒜, and select terminals from the available terminals 𝑇𝑇  for all O-D 

pairs. Assign O-D demand 𝑞𝑞𝑡𝑡
𝑜𝑜𝑜𝑜 , 𝑞𝑞𝑙𝑙

𝑜𝑜𝑜𝑜 , and 𝑞𝑞𝑖𝑖
𝑜𝑜𝑜𝑜  on the shortest path calculated based on 

𝑡𝑡𝑎𝑎𝑎𝑎, ∀𝑎𝑎 ∈ 𝒜𝒜𝑡𝑡, 𝑡𝑡𝑎𝑎𝑎𝑎, ∀𝑎𝑎 ∈ 𝒜𝒜𝑙𝑙, and 𝑡𝑡𝑎𝑎𝑎𝑎, ∀𝑎𝑎 ∈ 𝒜𝒜, respectively, and initialize the path sets 𝐾𝐾𝑡𝑡
𝑜𝑜𝑜𝑜, 

𝐾𝐾𝑙𝑙
𝑜𝑜𝑜𝑜, and 𝐾𝐾𝑖𝑖

𝑜𝑜𝑜𝑜 with the corresponding shortest path for each O-D pair (𝑜𝑜, 𝑑𝑑). This initializa-
tion yields path flows and link flows. Set iteration count to 𝑝𝑝 = 1. 

Step 1 
For each O-D pair (𝑜𝑜, 𝑑𝑑): 

Step 1.1 (Update) 

Set 𝑡𝑡𝑎𝑎𝑎𝑎 = 𝑡𝑡𝑎𝑎𝑎𝑎 �𝑥𝑥𝑎𝑎𝑎𝑎(𝑝𝑝)� , ∀𝑎𝑎 ∈ 𝒜𝒜. Update the first derivative lengths, i.e., path travel times 
at current flow: 𝑑𝑑𝑘𝑘𝑘𝑘

𝑜𝑜𝑜𝑜(𝑝𝑝), ∀𝑘𝑘 ∈ 𝐾𝐾𝑡𝑡
𝑜𝑜𝑜𝑜, 𝑑𝑑𝑘𝑘𝑘𝑘

𝑜𝑜𝑜𝑜(𝑝𝑝), ∀𝑘𝑘 ∈ 𝐾𝐾𝑙𝑙
𝑜𝑜𝑜𝑜, and 𝑑𝑑𝑘𝑘𝑘𝑘

𝑜𝑜𝑜𝑜(𝑝𝑝), ∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖
𝑜𝑜𝑜𝑜. 

Step 1.2 (Direction finding) 
Find the shortest path 𝑘̄𝑘𝑡𝑡

𝑜𝑜𝑜𝑜(𝑝𝑝) based on 𝑡𝑡𝑎𝑎𝑎𝑎(𝑝𝑝), ∀𝑎𝑎 ∈ 𝒜𝒜𝑡𝑡. If different from all the paths in 
𝐾𝐾𝑡𝑡

𝑜𝑜𝑜𝑜, add it to 𝐾𝐾𝑡𝑡
𝑜𝑜𝑜𝑜 and record 𝑑𝑑𝑘̄𝑘𝑡𝑡

𝑜𝑜𝑜𝑜(𝑝𝑝)
𝑜𝑜𝑜𝑜 . If not, tag the shortest among the paths in 𝐾𝐾𝑡𝑡

𝑜𝑜𝑜𝑜 as 
𝑘̄𝑘𝑡𝑡

𝑜𝑜𝑜𝑜(𝑝𝑝) . Repeat this procedure for 𝐾𝐾𝑙𝑙
𝑜𝑜𝑜𝑜  and 𝐾𝐾𝑖𝑖

𝑜𝑜𝑜𝑜  to find 𝑑𝑑𝑘̄𝑘𝑙𝑙
𝑜𝑜𝑜𝑜(𝑝𝑝)

𝑜𝑜𝑜𝑜  and 𝑑𝑑𝑘̄𝑘𝑖𝑖
𝑜𝑜𝑜𝑜(𝑝𝑝)

𝑜𝑜𝑜𝑜  based on 
𝑡𝑡𝑎𝑎𝑎𝑎, ∀𝑎𝑎 ∈ 𝒜𝒜𝑙𝑙 and 𝑡𝑡𝑎𝑎𝑎𝑎, ∀𝑎𝑎 ∈ 𝒜𝒜, respectively. 

Step 1.3 (Move) 
Set the new path flows for 𝐾𝐾𝑡𝑡

𝑜𝑜𝑜𝑜. 

𝑓𝑓𝑘𝑘𝑘𝑘
𝑜𝑜𝑜𝑜(𝑝𝑝 + 1) = 𝑚𝑚𝑚𝑚𝑚𝑚 �0, 𝑓𝑓𝑘𝑘𝑘𝑘

𝑜𝑜𝑜𝑜(𝑝𝑝) −
𝛼𝛼(𝑝𝑝)

𝑠𝑠𝑘𝑘𝑘𝑘
𝑜𝑜𝑜𝑜(𝑝𝑝)

�𝑑𝑑𝑘𝑘𝑘𝑘
𝑜𝑜𝑜𝑜(𝑝𝑝) − 𝑑𝑑𝑘̄𝑘𝑡𝑡

𝑜𝑜𝑜𝑜(𝑝𝑝)
𝑜𝑜𝑜𝑜 �� , ∀𝑘𝑘 ∈ 𝐾𝐾𝑡𝑡

𝑜𝑜𝑜𝑜,  𝑘𝑘 ≠ 𝑘̄𝑘𝑡𝑡
𝑜𝑜𝑜𝑜 (18) 

where 

𝑠𝑠𝑘𝑘𝑘𝑘
𝑜𝑜𝑜𝑜(𝑝𝑝) = �

𝜕𝜕𝑡𝑡𝑎𝑎𝑎𝑎
𝑜𝑜𝑜𝑜(𝑝𝑝)

𝜕𝜕𝑥𝑥𝑎𝑎𝑎𝑎
𝑜𝑜𝑜𝑜(𝑝𝑝)𝑎𝑎

, ∀𝑘𝑘 ∈ 𝐾𝐾𝑡𝑡
𝑜𝑜𝑜𝑜 (19) 

𝑎𝑎 denotes the links that are on either 𝑘𝑘 or 𝑘̄𝑘𝑡𝑡
𝑜𝑜𝑜𝑜, but not on both. 𝛼𝛼(𝑝𝑝) is the step size; the 

value of this parameter is set as 1 [39]. Now, 

𝑓𝑓𝑘̄𝑘𝑜𝑜𝑜𝑜𝜉𝜉
𝑜𝑜𝑜𝑜 (𝑝𝑝 + 1) = 𝑞𝑞𝑡𝑡

𝑜𝑜𝑜𝑜 − � 𝑓𝑓𝑘𝑘𝑘𝑘
𝑜𝑜𝑜𝑜(𝑝𝑝 + 1) , ∀𝑘𝑘 ∈ 𝐾𝐾𝑡𝑡

𝑜𝑜𝑜𝑜,  𝑘𝑘 ≠ 𝑘̄𝑘𝑡𝑡
𝑜𝑜𝑜𝑜(𝑝𝑝) (20) 

Follow the above procedure to find a new path flow for 𝐾𝐾𝑙𝑙
𝑜𝑜𝑜𝑜 and 𝐾𝐾𝑖𝑖

𝑜𝑜𝑜𝑜. From path flows 
find the link flows 𝑥𝑥𝑎𝑎𝑎𝑎(𝑝𝑝 + 1). 

Step 2 (Convergence test) 
If the convergence criterion is met, stop. Else set 𝑝𝑝 = 𝑝𝑝 + 1 and go to Step 1. 
Figure 2 shows a flow chart that illustrates how the SAA and GP algorithms are used to solve 

the traffic assignment problem. The model solution procedure starts with the input of O-D de-
mands and intermodal network data. Then, a number of disruption-scenario samples are gener-
ated following the procedure described in Step 1 of the SAA algorithm. Then, for a specific 
scenario sample, the GP algorithm solves the assignment problem and outputs the network link 
flows. This is repeated until all the scenario samples have been considered. After that, the proce-
dure continues to Steps 2 to 4 of the SAA algorithm. 
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Figure 2. Algorithmic framework. 

5. Numerical Experiments 
The numerical experiments were run on a desktop computer with an Intel Core i7 3.40-GHz 

processor and 24 GB of RAM. To validate the proposed model and algorithmic framework, the 
road-rail transportation network in the contiguous U.S. and four disaster scenarios were consid-
ered. 

5.1. Network and Disaster Data 
The numerical experiments used the U.S. road-rail intermodal network shown in Figure 3 

[3]. This network is a simplified version of the U.S. intermodal network created by Oak Ridge 
National Laboratory [40]. The simplified network consists of only Interstates, Class I railroads, 
and road-rail terminals. In Figure 3, the green circles represent Freight Analysis Zone (FAZ) 
centroids, the black triangles represent road-rail terminals, the black lines represent Interstates, 
and the grey dashed lines represent Class I railroads. In all, the network has a total of 1532 links 
and 301 nodes. The nodes include 120 FAZ centroids, 97 major road intersections, and 84 major 
rail junctions. 

The Freight Analysis Framework (FAF) is the most comprehensive public source of freight 
data in the U.S. [41]. Currently, the FAF version 5 dataset is available. However, in this paper 
FAF version 3 (FAF3) was used due to two reasons: (i) the impacts of disaster scenarios were 
evaluated against the base case without uncertainty [3] which is based on FAF3 and (ii) the net-
work used for experiments (Figure 3) were generated using inputs from FAF3. The FAF5 has 132 
FAZ compared to 120 FAZ in FAF3. Note that the proposed model and algorithmic framework 
can assign freight flows using data from any version of FAF since FAZ is an input for O-D pairs. 

It is assumed that there are 14,400 possible O-D demand pairs in the network since FAF3 
has 120 FAZ. The freight demand from FAF is provided in terms of tonnage. Therefore, it needs 
to be converted to the number of trucks or trains as input to the model. This study used the 
number of trucks and trains converted from freight demands from Uddin & Huynh [3]. The 
procedure to convert tonnage to truck is based on the truck equivalency factor for different truck 
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body types and empty truck factor. For intermodal freight transportation, half of the truck trips 
consist of empty movements (i.e., the truck travels unloaded to its next destination) [42]. The 
procedure for train and intermodal demands is based on average loading capacity. The freight 
O-D trip tables for the truck, rail, and intermodal trips are in 120 × 120 × 3 matrix form, cor-
responding to 120 origins, 120 destinations, and three shipping modes. For a single day in the 
base year (2007), there are 618,190 truck shipments, 1415 rail shipments, and 12,474 intermodal 
shipments. Note that FAF3 data are provided on an annual basis. For daily demand conversion, 
it was assumed that the road and rail infrastructure are operational 365 days a year. 

 
Figure 3. U.S. road-rail intermodal network [3]. 

To create the disaster scenarios, the U.S. natural disaster risk map shown in Figure 4 was 
used; this map was generated using data from the American Red Cross and the National Oceanic 
and Atmospheric Administration [7]. As shown, the high-risk earthquake is limited to California 
and a few other states, whereas the moderate-risk earthquake covers a significantly larger area. 
For this reason, two earthquake scenarios were considered: one with only high-risk areas, and 
another with both high and moderate risk areas. In all, four disaster scenarios were considered 
for the numerical experiments. The scenarios are earthquake (high risk), earthquake (high and 
moderate risk), hurricane, and flood. 

 
Figure 4. U.S. natural disaster risk map [7]. 

In the experiments, the capacities of the links were assumed to have a uniform distribution, 
each with a specified range [23,30]. For each disaster scenario, at first link capacities were ran-
domly drawn from their corresponding distributions. Then to replicate the impact of the disaster, 
the capacities of 50% of the links in the risk areas were further reduced; these links were randomly 
selected. The reduction in capacity could be as high as 100% if the objective is to make a link 

https://www.hos.pub/


Highlights of Sustainability 2024 10  

 

https://www.hos.pub 

 

impassable. Since the network employed for the experiments is simplified, there are fewer alter-
nate paths between the O-D pairs. For this reason, an 80% reduction in capacity was assumed 
to avoid a complete gridlock. Other studies have also used a similar approach for capacity reduc-
tions (e.g., [27,30]). The aim of these experiments is to measure at a very high level how the 
different natural disasters impact freight logistics, for which limited information is available in 
the literature. Once the general relationship between network performance and disaster occur-
rence is established, future work can focus on examining specific cases such as comparing the 
cost of a hurricane in the Gulf Coast (e.g., Hurricane Harvey) versus one in the Southeastern 
region (e.g., Hurricane Florence) versus one in the Northeastern region (e.g., Hurricane Sandy). 

5.2. Results and Discussion 
To apply the SAA algorithm, the number of independent disruption-scenario samples (𝑀𝑀 ) 

was set to 100, the sample size (𝑁𝑁 ) was set to 1, and the number of large-size samples (𝑁𝑁′) was 
set to 1000. For the GP algorithm, the value of the relative gap (i.e., convergence criterion) was 
set to 0.0001 [43], which is the relative change in the value of the objective function from one 
iteration to the next. Note that the terms in the objective function were normalized to yield con-
sistent units. Specifically, the first term was divided by the sum of truck demand and intermodal 
truck demand, and the second term was divided by the sum of rail demand and intermodal rail 
demand. 

With the above parameters, the SAA method produced several candidate freight flow pat-
terns, but no more than 100 (𝑀𝑀 = 100). Among these candidate flow patterns, the optimal flow 
pattern is the one that yields the lowest optimality gap (Equation 16) when each candidate flow 
pattern is applied to the 1000 test scenarios (𝑁𝑁′ = 1000). 

Table 2 summarizes the cost statistics for the four disaster scenarios. These cost statistics were 
estimated using samples of different sizes as required by the SAA method. The CPU run times 
for the four disaster scenarios (high-risk earthquake, high and moderate risk earthquake, hurri-
cane, and flood) were 595.9, 716.2, 669.2, and 417.1 minutes, respectively. As shown, the impact 
of hurricane is least costly (mean total cost = 48 hours/day) and flood is most costly (mean total 
cost = 200 hours/day). 

Table 2. Cost statistics for solutions under different disasters. 

Total Cost  
(Hour/day) 

Earthquake  
(High Risk) 

Earthquake  
(High and Moderate Risk) Hurricane Flood 

Average 50.0401 76.2006 47.9100 199.1450 

Std. dev. 0.0579 0.1524 0.1294 0.3699 
Minimum 47.7146 70.0737 42.7106 184.2753 

Maximum 54.4278 87.7608 57.7205 227.2015 

gap 0.2001 0.4912 0.4162 1.1830 

𝜎𝜎gap 0.1939 0.5147 0.4355 1.2484 

Before comparing the resulting freight flows for road and rail networks for different disaster 
scenarios, the flows under base condition (i.e., without disaster) are shown in Figure 5. The thick-
ness of the links signifies the volume of assigned freight traffic. The result in the left part of Figure 
5 indicates that there is high truck flow in Interstates that traverse Arkansas, California, Con-
necticut, Florida, Georgia, Illinois, Indiana, Michigan, New Jersey, New York, Tennessee, Texas, 
and Washington. The result in the right part of Figure 5 indicates that there is high train flow on 
rail tracks that traverse Arizona, Georgia, Illinois, Indiana, Iowa, Missouri, Montana, Nebraska, 
New Jersey, New Mexico, New York, North Dakota, Ohio, Pennsylvania, Texas, Wyoming, and 
Washington. 

The resulting user-equilibrium flow for road and rail networks for different disaster scenarios 
are shown in Figures 6–9. The result in the left part of Figure 6 indicates that there is high truck 
flow on Interstates that traverse Arizona, California, Florida, Georgia, Idaho, Illinois, Indiana, 
Michigan, New York, Ohio, and Wyoming under the high-risk earthquake scenario. The high 
truck flow on I-80 in Nevada and Utah is due to freight being diverted from I-5 in California 
when there is an earthquake. The result in the right part of Figure 6 indicates that there is high 
train flow on rail tracks that traverse Illinois, Indiana, Iowa, Minnesota, Montana, North Dakota, 
South Dakota, West Virginia, and Wisconsin under the high-risk earthquake scenario. 
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Compared to the base case scenario (without any disaster), there is little difference in the train 
flow because the rail tracks in these states are not affected by the earthquake in California. 

Road Rail

0-5,000
FAF Truck per Day

5,001-10,000
10,001-15,000
15,001-20,000
20,001-25,000

0-15
Freight Train per Day

16-25
26-50
51-100
101-200  

Figure 5. Freight traffic assignment (base case). 
 

Road Rail

0-5,000
FAF Truck per Day

5,001-10,000
10,001-15,000
15,001-20,000
20,001-25,000

0-15
Freight Train per Day

16-25
26-50
51-100
101-200  

Figure 6. Freight traffic assignment under earthquake (high risk). 

Figure 7 shows the assigned freight flow under the high and moderate risk earthquake sce-
nario. The result in the left part of Figure 7 indicates that there is high truck flow on Interstates 
that traverse Georgia, Indiana, Kentucky, Pennsylvania, Tennessee, and Texas. Compared to 
the high-risk earthquake scenario, there is a more even distribution of truck flow in the Western 
states (such as California, Nevada, Arizona, and Utah). The result in the right part of Figure 7 
indicates that there is high train flow on rail tracks that traverse Illinois, Iowa, Minnesota, Mon-
tana, North Dakota, South Dakota, West Virginia, and Wisconsin. This assigned rail flow is very 
similar to that of the high-risk earthquake scenario. 

Road Rail

0-5,000
FAF Truck per Day

5,001-10,000
10,001-15,000
15,001-20,000
20,001-25,000

0-15
Freight Train per Day

16-25
26-50
51-100
101-200
201-300  

Figure 7. Freight traffic assignment under earthquake (high and moderate risk). 
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Figure 8 shows the assigned freight traffic flow under the hurricane scenario. The result in 
left part of Figure 8 indicates high truck flow on Interstates that traverse California, Illinois, In-
diana, Missouri, Ohio, Tennessee, Texas, and Pennsylvania. Compared to the base case, trucks 
are diverted from the East and Gulf Coast to the North when there is a hurricane in these regions. 
The result in right part of Figure 8 indicates high train flow on rail tracks that traverse Iowa, 
Minnesota, Nebraska, North Dakota, South Dakota, and Wyoming. As is the case with truck 
flow, there is a higher concentration of rail flow in the Midwest regions. 

Road Rail

0-5,000
FAF Truck per Day

5,001-10,000
10,001-15,000
15,001-20,000
20,001-25,000

0-15
Freight Train per Day

16-25
26-50
51-100
101-200  

Figure 8. Freight traffic assignment under hurricane. 

Lastly, Figure 9 shows the assigned freight traffic flow under the flooding scenario. The result 
in the left part of Figure 9 indicates that there is high truck flow in Interstates that traverse Ala-
bama, Arkansas, Indiana, New Mexico, New York, Oklahoma, Pennsylvania, Tennessee, and 
Texas. Some of the Interstates have very high truck flow; particularly, I-40 in Arkansas and Ok-
lahoma, and I-90 in New York. The reason that trucks are diverting from the Interstates that 
traverse the Midwestern states is because there is a higher percentage of links in these states that 
are affected by the flood. The result in the right part of Figure 9 indicates that some of the rail 
tracks have very high train flow (i.e., more than 200 trains per day); particularly, rail tracks in 
Montana and Wyoming. Furthermore, most of the Mountain states have high rail flow through 
their states under the flooding scenario. This is also because the trains are avoiding the use of rail 
tracks in the Midwest regions. 

Road Rail

0-5,000
FAF Truck per Day

5,001-10,000
10,001-15,000
15,001-20,000
20,001-25,000

0-15
Freight Train per Day

16-25
26-50
51-100
101-200
201-30025,001-30,000  

Figure 9. Freight traffic assignment under flood. 

The proposed model’s projected ton-miles under different disaster scenarios are compared 
quantitatively against those reported in Uddin & Huynh [3], base case in the experiments, for 
U.S. Census Regions. As evident from Table 3, for both highway and railway modes, the freight 
ton-miles in the case of the contiguous U.S. are higher than that of the base case because network 
uncertainty was not considered. In the Midwest region, the highway freight ton-miles is 3% lower 
for high risk earthquake, 6% higher for high and moderate risk earthquake, 6% higher for 
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hurricane, and 4% lower for flood compared to that of the base case. In the Northeast region, 
the highway freight ton-miles is 1% higher for high risk earthquake, 2% higher for high and 
moderate risk earthquake, 5% higher for hurricane, and 12% higher for flood compared to that 
of the base case. In the South region, the highway freight ton-miles is 8% higher for high risk 
earthquake, 7% higher for high and moderate risk earthquake, 2% higher for hurricane, and 
25% higher for flood compared to that of the base case. Lastly, in the West region, the highway 
freight ton-miles is 28% higher for high risk earthquake, 16% higher for high and moderate risk 
earthquake, 1% higher for hurricane, and 25% higher for flood compared to that of the base 
case. Overall, for high-risk and high and moderate risk earthquake, the West region had the 
highest increase in freight truck ton-miles. This is expected given the majority of the western 
states are in earthquake risk areas. For flood, the Northeast, South, and West regions had a high 
increase in ton-miles (more than 10%). This is also expected due to the same reason stated above. 

Table 3. Millions of freight ton-miles under different disasters. 

Mode Census Region Uddin & Huynh [3] Earthquake  
(High Risk) 

Earthquake  
(High and Moderate Risk) Hurricane Flood 

Trucka 

Midwest 700,458 681,225 743,699 743,790 674,983 
Northeast 224,380 225,759 227,946 235,671 251,022 

South 799,542 862,185 852,833 812,635 999,975 

West 448,319 574,544 518,351 453,333 587,796 
Contiguous U.S. 2,172,699 2,343,713 2,342,829 2,245,429 2,513,776 

Railb 

Midwest 817,607 843,611 837,397 822,495 720,620 

Northeast 33,328 34,271 43,041 33,940 57,010 
South 417,587 422,405 435,069 429,813 595,740 

West 434,515 443,552 458,557 437,808 671,308 
Contiguous U.S. 1,703,037 1,743,839 1,774,064 1,724,056 2,044,678 

a Includes truck, and multiple modes and mail; b Includes rail, and multiple modes and mail. 

In the Midwest region, the rail freight ton-miles is 3% higher for high risk earthquake, 2% 
higher for high and moderate risk earthquake, 1% higher for hurricane, and 12% lower for flood 
compared to that of the base case. In the Northeast region, the rail freight ton-miles is 3% higher 
for high risk earthquake, 29% higher for high and moderate risk earthquake, 2% higher for hur-
ricane, and 71% higher for flood compared to that of the base case. In South region, the rail 
freight ton-miles is 1% higher for high risk earthquake, 4% higher for high and moderate risk 
earthquake, 3% higher for hurricane, and 43% higher for flood compared to that of the base 
case. Lastly, in the West region, the rail freight ton-miles is 2% higher for high risk earthquake, 
6% higher for high and moderate risk earthquake, 1% higher for hurricane, and 54% higher for 
flood compared to that of the base case. Overall, the impact of flooding is the highest for North-
east, South, and West regions because there are more states in the flood-risk areas and they are 
scattered throughout these regions. 

6. Conclusion 
The current freight forecasting methodologies do not consider the risks from weather-induced 

disruptions which have dramatically increased in recent years; several have occurred recently 
that severely affected the U.S. freight transportation network. To address these disruptions, this 
paper developed a stochastic model to assign freight traffic in a large-scale road-rail intermodal 
network that is subject to network uncertainty (i.e., natural disasters or disruptions). For a specific 
disaster scenario and given a set of freight demands between origins and destinations and desig-
nated modes (road-only, rail-only, and intermodal), the model finds the user-equilibrium freight 
flow. This paper also provided an algorithmic framework, based on the Sample Average Approx-
imation and Gradient Projection algorithm, to solve the model. Four disaster scenarios were 
considered in the numerical experiments: high risk earthquake, high and moderate risk earth-
quake, hurricane, and flood. The proposed model and algorithmic framework were tested using 
the U.S. road-rail intermodal network and the Freight Analysis Framework data. The results 
indicated that when disasters are considered the freight ton-miles are higher than when no dis-
aster is considered, which is expected. The resulting user-equilibrium flows clearly indicate the 
impact of disasters; that is, truck and rail flow are shifted away from the impacted areas. These 
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results highlight the need to address highways and rail tracks in areas that are normally underuti-
lized but heavily used by trucks and trains when there is a disaster. In terms of cost and freight 
ton-miles, the impact of flooding is the highest. 

This study has a few limitations that could be enhanced in future work. First, the disaster 
scenarios were generated considering their impact on all intermodal network elements located in 
the disaster risk area. In reality, a disaster is likely to be more concentrated in one area. Second, 
the impact of disasters was assumed to be uniform for all randomly selected elements. In reality, 
the impact will be more severe at the center of the disaster (e.g., the eye of a hurricane or the 
epicenter of an earthquake). Lastly, time constraints at the intermodal terminals and/or destina-
tions were not considered. With disaster-related data and freight data becoming more readily 
available, future work could also compare the freight-related cost of one hurricane versus an-
other; for example, a hurricane that makes landfall in South Florida versus one that makes land-
fall in the Carolinas. 
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