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Abstract Disaggregated data is often used to model the cost-benefit of residential energy man-
agement systems. However, obtaining such data is time-intensive and monetarily expensive. This 
hinders the depth of analysis that can be done on these systems and negatively influences their 
large-scale uptake. This study proposes a novel generalised model of these systems that uses smart 
meter load profile data to model their cost-benefit. Using two years of half-hourly electricity con-
sumption data from 5379 households in London, the model was used to examine how sociodem-
ographic, tariff structures, and the choice of operational objectives of these systems, interact to 
influence their cost-benefit. The results showed that the proposed model produced reliable cost-
benefit results within what is normally obtained in literature. The model demonstrated that ap-
plying one set of objectives to different customers leads to an inequitable distribution in benefits; 
rather, an optimal set of objectives for a given customer under a specific tariff structure can be 
found to produce a more equitable distribution in benefits across all customers. The proposed 
model is replicable and uses data that can be obtained easily and cheaply from smart meters, 
making it versatile for large-scale cost-benefit analysis by any electricity retailer. 
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1. Introduction 
An increase in electricity consumption and limited land space has made it difficult to find 

optimal sites to install large-scale renewable sources such as hydro-dams has made it challenging 
to expand the electricity grid to help to increase electricity supply [1,2]. This has led many aca-
demics and industry stakeholders to advocate the need for smart grid solutions [3]. The smart 
grid is meant to provide more efficient use of the grid, in part, by permitting a higher degree of 
demand-side management, particularly in the form of demand response [4]. 

Nevertheless, it was recognised that whilst electricity consumers such as residential customers 
were willing to change their energy consumption to benefit the environment and society, these 
customers did not want to spend time micromanaging electricity loads at their premises [5]. This 
necessitated the development of residential energy management systems [5]. 

Residential (or Home) energy management systems consist of computer-aided systems that 
are used at various levels of the grid to monitor, control, and optimise the performance of elec-
tricity production and consumption [6]. With a global market for these systems expected to reach 
$62.3 billion by 2023, it is noted that these systems have the potential to permit customers to 
improve power system reliability by participating in demand response programs, improving their 
energy efficiency while delivering a greater coupling between pricing schemes and customer be-
haviour [7,8]. 

Although several small-scale cost-benefit studies have provided a solid foundation for estab-
lishing the potential benefits of these systems, there are still several issues that hinder any sub-
stantial investigation into the potential large-scale benefits that customers and retailers can realise 
from these systems [9]. Two issues of concern for this research are the modelling approach used 
for these systems; and the diversity of both customers and operational objectives involved in the 
use of these systems. 
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1.1. Need for a New Modelling Approach 
When modelling these systems, a typical model consists of a power source (such as solar PV), 

energy consumption data of appliances, flexible load (for example electric vehicles and water 
heaters), objective functions for the system, constraints, and a scheduling algorithm for the sys-
tem, as shown in Figure 1 [2,6,10,11]. 

 
Figure 1. General interaction between parts of residential energy management systems models. 

The scheduling algorithm uses the electricity consumption from appliances and flexible load 
and electricity production from power resources to create a schedule that would fulfil the objec-
tives of the system within the given constraints [12,13]. Objectives could range from reducing 
the electricity bills of customers to social objectives such as reducing greenhouse gas emissions 
[14]. Whilst the modelling approach is good, it heavily relies on electricity consumption data for 
household appliances [15] to create optimal schedules to curtail or shift electricity use and deter-
mine the optimal demand response that a customer can provide [16]. 

The limited amount of appliance data has restricted the number of households that can be 
examined when looking at the benefit and cost of residential energy management systems to 
different customers [17,18]. This by extension has limited the scale and depth of analysis that 
can be done on the operation of residential energy management systems [19,20]. 

Whereas this data is readily available for a few households in online databases such as 
UKDALE [17], there have not been, in recent times, large-scale surveys (involving several thou-
sand households) to capture such disaggregated data [17]. In fact, [21] compares all major pub-
licly available disaggregated appliance data sets to reveal that one of the largest such sets has data 
for only 669 households (“DATAPORT”). Table 1 provides some other examples of various 
versions of the model and research gaps that reflect the problem expressed thus far in the mod-
elling approach used for these systems. 

Table 1. Research done on residential energy management systems and research gaps. 
Components Used Systems Objective Functions Constraints Research Gap References 
• Household appliance data 
• Battery 
• PV 

• Minimise electricity use 
costs 

• Minimise waiting time 
• Energy balance Never indicated if approach can 

be used for large-scale studies. [22] 

• Household appliance data 
• Battery 
• Photovoltaics 

• Minimise electricity bill 
• Battery Price 
• Electric grid 
• Capacity constraints 

Method required very involved 
analysis for only three homes. [23] 

• Household appliance data 
• Battery 
• Electric Water Heater 
• Photovoltaics 

• Maximises customer’s profit 
• Performance characteristics 
• Response Fatigue Index 
• Energy balance 

Stochastic analysis is only 
tractable for a limited number of 
households. 

[24] 

• Household appliance data 

• Minimise electricity use 
costs 

• Minimise customer incon-
venience 

• Load levels 
• Ramp limits 
• Daily electricity uses limits 

Paper is based on a single case 
study. No indications of whether 
the method can be scaled to 
several thousand households. 

[25] 

Some argue that traditional methods such as intrusive and non-intrusive techniques can be 
used more extensively to obtain appliance data. However, these techniques in themselves have 
their own disadvantages. Intrusive Load Monitoring (ILM) has the practical disadvantages of 
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these techniques including high costs, multiple sensor configuration as well as installation com-
plexity [26]. Non-Intrusive Load Monitoring (NILM) techniques, on the other hand, often in-
volve intensive analysis of active and reactive power transience [26,27]. Both techniques, there-
fore, may not be suitable for obtaining large-scale disaggregated appliance data for simple mod-
elling of residential energy management systems. 

Given this issue, a new modelling approach would be necessary for residential energy man-
agement systems. As highlighted by [28], the purpose of these systems is to modify the load profile 
of a household. Therefore, it stands to reason that the presence of these systems can be modelled 
directly from the load profile of a household [28]. 

Load profiles represent the aggregate result of electricity consumption and production of the 
household [29]. With the wide-scale use of smart-meters and improvements in load profile mod-
elling, large stores of household load profile data are readily available. Prominent examples of 
datasets that contain large stores of household energy use data are given in Table 2. 

Table 2. Large sources of household energy consumption data. 
Dataset Description 

Smart Meter Energy Consumption Data 
in London Households [30] 

This dataset contains energy use readings for 5567 London House-
holds that took part in the “Low Carbon London” project between 
November 2011 and February 2014. 

Residential Energy Consumption Survey 
(RECS) [31] 

A 2005 survey that collected data from 4381 households that were 
statistically selected to represent the 111.1 million housing units in the 
U.S. 

German data set [32] 
Load profile generator capable of producing load profiles for several 
thousand households using data from 60 predefined households in 
Germany. 

From these data sets, analysis of customer energy consumption behaviour, the behaviour of 
smart grid technologies and modelling of load profiles using time series models such as auto-
regressive moving average models can easily be done [33]. However, none of these techniques 
have been applied in the case of modelling the behaviour of residential energy management sys-
tems. 

Developing a generalised model for a residential energy management system that relies on 
aggregated household load profile data from existing smart meters would enable retailers to avoid 
unnecessary resource-intensive economic feasibility studies that are commonly undertaken to ex-
amine possible smart grid advances. The model would allow retailers to produce cost-benefit 
analysis that can be used to articulate benefits to customers and create marketing strategies to 
encourage customer participation in demand response programs. A generalised model for resi-
dential energy management systems relying solely on smart meter data can help create cost-
effective benchmarks for comparing large-scale demand response projects. 

1.2. Need to Address Operational Conditions of Residential Energy Management Systems 
Even if such a generalised model can be created, there is still a secondary issue that needs to 

be addressed. Since small-scale studies have mainly focused on socially distinct customer types, 
different tariff types and operational objectives when modelling these systems [34], this has made 
it difficult to articulate the cost-benefit of these systems for large customer groups. This diversity 
has also made it difficult to determine the conditions that would produce an optimal demand 
response from residential energy management systems to maximise the benefits for a set of cus-
tomers [34]. 

As one would expect, different customers perceive value differently and therefore will have 
different expectations of energy management systems [35]. In addition, sociodemographic char-
acteristics [36] and tariff rates paid by customers [37], are two factors that influence energy use, 
energy management behaviour and the effectiveness of residential energy management systems. 

For example, [38] used 228 households (78 paying Real-time prices and 150 paying Time-
of-Use prices) to show that, customer demographics and tariff design affected how effective, en-
ergy management systems were for the overall welfare of the customer. The authors highlighted 
the need for an appropriate fit between customer, tariff, and system design to maximise the over-
all customers receive from the systems. Similarly, the authors of [39] conducted a questionnaire 
survey of 1913 residents in China and found that differences in sociodemographic factors such 
as gender, age and education all play a role in determining if residents would adopt energy man-
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agement systems, and how customers would make use of these systems. Unfortunately, few at-
tempts have been made to quantify the monetary benefits and cost that customer derives from 
these systems because of the social differences and tariff design. 

The fact that there are socially distinct groups of residential customers under different tariff 
regimes led to some confusion as to which operational objectives are best suited for modelling 
energy management systems [2]. For example, the authors of [14] examined 298 research papers 
that highlighted at least 10 different objectives being used to model residential energy manage-
ment systems. The objectives as collated by [14] included: maximising energy bill and emissions 
saving, and minimising system payback period and customer discomfort. Other general objec-
tives, such as maximising tax savings [40] and improving retailer profit [41], were also recorded 
in literature. However, research outlining which objective is best suited for individual customers 
or groups of customers is scant. 

1.3. Motivation 
Because this string of interrelated issues has not been comprehensively addressed, this has 

hindered any substantial investigation into the potential large-scale benefits that customers and 
retailers can realise from these systems [9]. This has had the negative effects of reducing the 
success rate of resource-intensive economic feasibility studies for these systems [42] and limiting 
customer uptake of these systems [43]. These two issues are of importance to the retailer as they 
can influence their financial decision-making process. Retailers wanting to advance smart grid 
technologies such as residential energy management systems need to be able to model their large-
scale effects as quick and as cheap as possible. Therein lies the motivation of this paper. 

1.4. Novelty and Contribution 
Considering the potential importance of large-scale modelling of residential energy manage-

ment systems, the overarching aim of this work was: 

To develop a generalised model of residential energy management systems that uses household aggregated load 
profile data to model their large-scale cost-benefit for a diverse group of customers. 

In achieving the overall aim of the research, the following major contributions were made to 
the state-of-the-art: 

• A validated generalised model for residential energy management systems was developed us-
ing a time series equation called an “Autoregressive Integrated Moving Average” equation. 
The generalised model uses the load profile of a household to forecast the optimal demand 
response and monetary benefits that the system provides for the customer, using a cost-benefit 
metric (𝑏𝑏𝑐𝑐). The metric itself is constructed by combining six of the most common operational 
objective functions, found in literature, namely: four benefit functions (electricity bill savings, 
emissions savings, tax savings and increase in retail profit) and two cost functions (discomfort 
and a simple payback period associated with the system). Using the load profile of a household 
to forecast the optimal demand response and monetary benefits is novel, as most researchers 
in the field use more expensive (and more difficult to obtain) disaggregated data to conduct 
such analysis. 

• Past published papers do not consider the appropriateness of the objective functions used to 
model these systems for their selected sample of customers. This work showed that the cost-
benefit provided by these systems is influenced by the optimal combination of the customers’ 
sociodemographic profile, tariff type and the operational objectives upon which the system 
functions. This is a relatively new finding as most research papers on the modelling of resi-
dential energy management systems often assume only one set of objective functions without 
regard for sociodemographic or tariff type. This implies that many of the conclusions drawn 
by past research in this field may not necessarily be the most optimal. 

• Finally, the generalised model was used to determine the optimal set of objective functions 
that should be used for different customer groups that would maximise the collective social 
benefit of these systems for all customers. This is highly significant and novel as it calls atten-
tion to the fact that when installing these systems on a large scale, optimising individual ben-
efits for customers may not necessarily optimise the collective social benefit for all customers 
or the overall benefit the retailer receives. 
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The rest of this paper is devoted to providing a detailed explanation of the aim of this research 
was achieved and how this in turn gave rise to the major contributions mentioned. 

1.5. Paper Organization 
Section 2 of the paper provides the method used to collect large-scale data for over 5000 

households arranged in 18 sociodemographic groups, how the residential energy management 
systems were modelled on a large scale and how this model in turn was used to analyse the effect 
of customer sociodemographic and tariff structures on the cost-benefit of these systems. Section 
3 offers the results of the analysis and Section 4 presents a discussion that supports the results of 
the paper. 

2. Method 
To address the aim of this research and provide context for the study, load profile data from 

households that participated in the “Low Carbon London” project (UK) were chosen as the data 
source for analysis. The project began in April 2010 and was initiated in response to the com-
mitment of the UK to reduce greenhouse gas emissions by 80% by 2050 [44]. 

One of the outcomes of the project was the classification of the 5567 households participating 
in the project into 18 sociodemographic groups [45] and two tariff types (Flat-rate and Time-of-
Use tariff) [45]. These households were considered a representative sample of all residents in 
London [46]. Consequently, the project provided a large source of validated energy use data 
already categorised by the sociodemographic of customers and the tariff structure. A complete 
description of the characteristics of each group is given in Appendix A. 

Since the households were scattered over a small geographic region, as highlighted in Figure 
2, it was not necessary to consider the spatial distribution of the households and its effects on 
energy demand when examining the operation of the residential energy management systems. 
Consequently, this simplified the level of analysis and assumptions that had to be made in simu-
lating the presence of these systems amongst households. 

 
Figure 2. Distribution of 5567 households in the “Low Carbon London” Project [46]. 

Moreover, closing reports on the project stipulated that the sociodemographic profile of cus-
tomers and the tariff customers pay influenced both peak and average electricity use [47]. This 
made participating households an excellent testbed for determining how the performance of res-
idential energy management systems is jointly influenced by the sociodemographic and tariff rate. 

Upon selecting the “Low Carbon London” project, of the 5567 households, data for a sample 
of 5379 households was available at [48]. This data consisted of half-hourly electricity consump-
tion from April 1st, 2010, to December 31st, 2012, and was used for the analysis in this research. 

The 5379 households selected were divided into 36 subgroups based on the 18 sociodemo-
graphic types and two tariff structures identified in the “Low Carbon London” project. It was 
noted that the hourly electricity use data for 5379 households needed to be converted into a 
manageable form to reduce both the complexity and time taken to perform any sort of analysis 
on this data. Therefore, the average monthly load profile for a typical customer in each of the 36 
sociodemographic subgroups from April 1st, 2010, to December 31st, 2012, was found. Exam-
ples of these average monthly load profiles can be found in Appendix B. The result was 36 
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average monthly load profiles that represented the electricity use of households in the different 
subgroups. 

After dividing the customers into 36 subgroups and finding the average monthly load profile 
for each subgroup, it was assumed each household had a residential energy management system 
installed. This was done to examine how these systems operated under different sociodemo-
graphic groups and tariff types. 

Furthermore, spot price data was collected from the N2EX Great Britain power market [34] 
for the same period. This spot price data, along with the tariff data, enabled customer electricity 
bills and retail revenue to be calculated during times of demand response. 

2.1. Generalised Modelling of Residential Energy Management System 
Before the cost-benefit of residential energy management systems could be assessed, the be-

haviour of these systems needed to be characterised. Owing to the limitations of using appliance 
data [16], this research adopted a novel approach that used load profile data to model the oper-
ation of these systems. A conceptual model of this approach is shown in Figure 3. 

 
Figure 3. Conceptual model characterising the residential energy management system. 

Load profile data from smart meters installed at homes (such as those installed during the 
“Low Carbon London” project) formed the input to the residential energy management system. 
This load data is converted to an “Autoregressive Moving Average” model (as indicated in step 
2 of Figure 3). An “Autoregressive Moving Average” model is simply a regression equation that 
is based on the idea that information from the recorded past electricity use of the household can 
be used to forecast future electricity use [49]. An “Autoregressive Moving Average” model was 
chosen because it has been used frequently (with a high degree of success) as a benchmark model 
[49] for time series analysis and forecasting of residential electricity use. The “Autoregressive 
Moving Average” model, more formally ARIMA(𝑝𝑝, 𝑑𝑑, 𝑞𝑞), is shown in Equation (1). 

𝑑𝑑𝑡𝑡 = � 𝜑𝜑𝑛𝑛. 𝑑𝑑𝑡𝑡−𝑛𝑛

𝑝𝑝

𝑛𝑛=1
+ � 𝜃𝜃𝑚𝑚. 𝑒𝑒𝑡𝑡−𝑚𝑚

𝑞𝑞

𝑚𝑚 =1
 (1) 

From Equation (1), the dependent variable (𝑑𝑑𝑡𝑡) is the electricity use value to be forecast and 
the independent variables “𝑑𝑑𝑡𝑡−𝑛𝑛” and “𝑒𝑒𝑡𝑡−𝑚𝑚” are past hourly electricity use, and past hourly 
forecast errors, respectively. The variable “𝑡𝑡” represents the time horizon under consideration, 
“𝑝𝑝” represents the number of past electricity use values needed to forecast “𝑑𝑑𝑡𝑡” and “𝑞𝑞” the 
number of past forecast error values needed to forecast “𝑑𝑑𝑡𝑡”. The key to representing load profile 
data as an “Autoregressive Moving Average” model is to find the regression coefficients of 𝜑𝜑𝑛𝑛 
and 𝜃𝜃𝑛𝑛 that accurately represents the electricity use profile under consideration. In this work a 
statistical software package (MATLAB) was used to do this. 

Equation (1) was modified to express the average and peak-to-average features of the elec-
tricity use profiles. In doing this, the independent variable (𝑑𝑑𝑡𝑡−𝑛𝑛) (past electricity use values) was 
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expressed as a linear combination of past average electricity use values (𝐴𝐴𝑡𝑡−𝑛𝑛) and past average-
to-peak electricity use values (𝑄𝑄𝑡𝑡−𝑛𝑛) as shown in Equation (2): 

𝑑𝑑𝑡𝑡 = �𝜑𝜑𝑛𝑛[𝐴𝐴𝑡𝑡−𝑛𝑛 + 𝑄𝑄𝑡𝑡−𝑛𝑛]
𝑝𝑝

𝑛𝑛=1
+ � 𝜃𝜃𝑚𝑚. 𝑒𝑒𝑡𝑡−𝑚𝑚

𝑞𝑞

𝑚𝑚=1
 (2) 

Since residential energy management systems are often required to produce a reduced per-
centage (𝑘𝑘1) in average electricity use [50], the overall effect is a reduced forecasted value (𝑑𝑑𝑡𝑡) as 
expressed in Equation (3). 

𝑑𝑑𝑡𝑡
∗∗ = 𝑘𝑘1.�𝛼𝛼𝑛𝑛.𝐴𝐴𝑡𝑡−𝑛𝑛 

𝑝𝑝

𝑛𝑛=1
+ 𝑘𝑘1 � 𝛽𝛽𝑛𝑛.𝑄𝑄𝑡𝑡−𝑛𝑛

𝑝𝑝

𝑛𝑛=1
+ 𝑘𝑘1. � 𝜃𝜃𝑚𝑚. 𝑒𝑒𝑡𝑡−𝑚𝑚

𝑞𝑞

𝑚𝑚=1
 (3) 

Similarly, these systems can also be required to produce a reduced percentage (𝑘𝑘2) in hourly 
peak-to-average electricity use [6]. This was represented as a further reduced (𝑑𝑑𝑡𝑡

∗) as expressed 
in Equation (4). 

𝑑𝑑𝑡𝑡
∗ = 𝑘𝑘1.� 𝛼𝛼𝑛𝑛.𝐴𝐴𝑡𝑡−𝑛𝑛 

𝑝𝑝

𝑛𝑛=1
+ 𝑘𝑘1. 𝑘𝑘2 � 𝛽𝛽𝑛𝑛.𝑄𝑄𝑡𝑡−𝑛𝑛

𝑝𝑝

𝑛𝑛=1
+ 𝑘𝑘1. � 𝜃𝜃𝑚𝑚. 𝑒𝑒𝑡𝑡−𝑚𝑚

𝑞𝑞

𝑚𝑚=1
 (4) 

As such, Equation (4) was used to characterise the forecasted effect that residential energy 
management systems have on the hourly electricity consumption (𝑑𝑑𝑡𝑡) of the typical households. 
Hence, the total reduced electricity consumed is given by Equation (5). 

𝐷𝐷∗ = �𝑑𝑑𝑡𝑡
∗

𝑇𝑇

𝑡𝑡=1
 (5) 

In addition to converting the load profile to an “Autoregressive Moving Average” form, the 
residential energy management system model made reductions in average and peak-to-average 
electricity use values based on objectives and constraints that had to be specified (step 3, Figure 
3). The objectives chosen for this research, although not exhaustive, covered a range of possible 
functions, as outlined in previous review articles [14,51]. These functions can be divided into two 
groups; objectives associated with maximising the benefits to the customer [51], and objectives 
associated with minimising the cost of having these systems [51], as shown in Table 3. 

Table 3. List of objectives used in this research and references for their formulas. 
Objective Functions Formulas Parameters Reference 

Maximise electricity bill savings (𝐽𝐽1): Electricity bill savings is the money the 
customer saves as the energy management system produces a reduced elec-
tricity demand. 

𝐽𝐽1 = �[(𝑑𝑑𝑡𝑡 − 𝑑𝑑𝑡𝑡
∗) × 𝑟𝑟𝑡𝑡]

𝑇𝑇

𝑡𝑡=1
  [16] 

Maximise the emissions savings (𝐽𝐽2 ): Customers consuming less electricity 
cause power plants to produce a reduced electricity output resulting in less 
emissions into the environment. Emissions are the amount of greenhouse 
gases (primarily carbon dioxide) released into the atmosphere. 

𝐽𝐽2 = �[(𝑑𝑑𝑡𝑡 − 𝑑𝑑𝑡𝑡
∗) × 𝑐𝑐 × 𝑐𝑐𝑟𝑟]

𝑇𝑇

𝑡𝑡=1
 𝑐𝑐 = 70 £ 

𝑐𝑐𝑟𝑟 = 0.003 𝑘𝑘𝑘𝑘/𝑘𝑘𝑘𝑘ℎ [52] 

Maximise tax savings (𝐽𝐽3): According to [40] reduced taxes charged to the 
customer’s electricity bill is generally given to customers that are part of a 
demand response program as an incentive for reduced electricity use. 

𝐽𝐽3 = �(𝜏𝜏. 𝑑𝑑𝑡𝑡 − 𝜏𝜏 ̃. 𝑑𝑑𝑡𝑡
∗)

𝑇𝑇

𝑡𝑡=1
  [40] 

Maximise retail profit (𝐽𝐽4): The revenue obtained by the retailer is reflected 
in the electricity bill of the customer. Maximising retail profit involves load 
shifting and this load shifting must satisfy one major condition: The profit per 
kWh made from period “𝑏𝑏” is higher than the profit made per kWh during 
period “𝑎𝑎”. This implies that the retailer can make an increase in profit if the 
load is shifted from period “𝑎𝑎” to period “𝑏𝑏”. The load shifting algorithm is 
given in Table C1 of Appendix C. 

𝐽𝐽4 = �[(𝑑𝑑𝑡𝑡 − 𝑑𝑑𝑡𝑡
∗) × (𝑟𝑟𝑡𝑡 − 𝑠𝑠𝑡𝑡)]

𝑇𝑇

𝑡𝑡=1
  [41,53] 

Minimising customer discomfort ( 𝐽𝐽5 ): One of the most common is the 
Taguchi loss function. This function gives a relationship between the reduced 
consumption of a good (in this case electricity) and loss of satisfaction the con-
sumer experiences [54]. 

𝐽𝐽5 =
𝑋𝑋
𝑍𝑍

× 𝑌𝑌   [55] 

Minimising payback period (𝐽𝐽6): Simple payback period is the amount of time 
taken to recover the cost of the system. The payback period “𝑛𝑛” (given in 
months) is simply given as the cost of the system divided by the savings per 
month produced by the energy management system. 

𝐽𝐽6 = �𝑝𝑝𝑝𝑝. 𝐽𝐽1 − 𝐶𝐶𝑝𝑝�2 𝐶𝐶𝑝𝑝 = 273.13 £ [56,57] 

where 𝑋𝑋 = ∑ [𝑑𝑑𝑡𝑡 × 𝑟𝑟𝑡𝑡]
𝑇𝑇
𝑡𝑡=1 , 𝑌𝑌 = 𝜎𝜎2

𝑡𝑡
∗ + ∑ [(𝑑𝑑𝑡𝑡

∗)2]𝑇𝑇
𝑡𝑡=1 , 𝑍𝑍 = 𝜎𝜎2

𝑡𝑡 + ∑ �𝑑𝑑𝑡𝑡
2�𝑇𝑇

𝑡𝑡=1 . 
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The benefit and cost objectives functions were combined into a single benefit-cost objective 
function given by Equation (6). This objective function, when maximised, leads to the optimal 
load profile of the household. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒 𝑏𝑏𝑐𝑐 = 𝑤𝑤1. 𝐽𝐽1 + 𝑤𝑤2. 𝐽𝐽2 + 𝑤𝑤3. 𝐽𝐽3 + 𝑤𝑤4. 𝐽𝐽4
𝑤𝑤5. 𝐽𝐽5 + 𝑤𝑤6. 𝐽𝐽6

 (6) 

where 𝑏𝑏𝑐𝑐, optimal benefit-cost ratio; 𝐽𝐽1, 𝐽𝐽2, 𝐽𝐽3, 𝐽𝐽4, 𝐽𝐽5, 𝐽𝐽6, the objective function of energy sav-
ings (𝐽𝐽1), emissions savings (𝐽𝐽2), tax savings (𝐽𝐽3), retail portfolio savings (𝐽𝐽4), customer discomfort 
(𝐽𝐽5) and payback period (𝐽𝐽6); 𝑤𝑤1, 𝑤𝑤2, 𝑤𝑤3, 𝑤𝑤4, 𝑤𝑤5, 𝑤𝑤6, weights that take a discrete value of either 
0 or 1. 

In formulating this, the weights associated with the objective functions indicate a binary 
choice (i.e., 0 or 1). If an objective is considered during the maximisation of 𝑏𝑏𝑐𝑐, this weighting is 
1, if it is neglected the weight is 0. Invariably, when the system is installed in a home, the customer 
will experience discomfort and will have to spend money over time for the installation. Therefore, 
for the analysis done in this research, the weights 𝑤𝑤5 and 𝑤𝑤6 were set at a constant value of 1 
whilst all other weights can vary. 

In the process of fulfilling its objectives, there are constraints that the system must adhere to. 
One of these constraints is that the system must not reduce electricity below the base load of the 
household. Hourly base load (𝐵𝐵𝑡𝑡) is the ongoing basic amount of electricity required to run the 
house when household occupants are not actively using any appliances. This base load includes 
electricity use from systems such as fridges, appliances on standby, WI-FI routers and chargers. 
In reducing household electricity consumption, the model must ensure that the base load is still 
serviced. This constraint can be given by Equation (7). 

𝐵𝐵𝑡𝑡 ≤ 𝑑𝑑𝑡𝑡
∗ ≤ 𝑑𝑑𝑡𝑡 (7) 

Once the objectives and constraints were outlined, a load profile modifying algorithm was 
constructed. This algorithm specifies how the system modifies the load profile of the household 
(represented by the “Autoregressive Moving Average” model) to fulfil the objectives given to it 
while operating within constraints. The algorithm, based on particle swarm optimisation (PSO), 
is given in Appendix C. Particle swarm optimisation was chosen as the basis for the algorithm 
because it is excellent at escaping suboptimal solutions, is simple to implement, does not add to 
the complexity of the problem being solved and is efficient in finding optimal (or near-optimal) 
solutions [58]. 

The final output of the model consisted of the optimal reduced monthly load profile of the 
household, the values of the reduced percentage (𝑘𝑘1) in average electricity use, the reduced per-
centage (𝑘𝑘2) in hourly peak-to-average electricity use and the final benefit-cost ratio 𝑏𝑏𝑐𝑐 gained 
from the system. In a real scenario, the optimal (reduced) load profile would form the next input 
of the smart meter (assuming household occupants adhered to the operation of the system). 

2.2. Modelling the Effect of Customer Sociodemographic and Tariff Structures 
Having developed a generalised model of a residential energy management system, it was 

necessary to determine how sociodemographic factors, tariff structures and the choice of objec-
tives interact to influence the benefit, and cost, customers derive from these systems on a large 
scale. To do this, the 36 average load profiles representing each sociodemographic group were 
paired with the residential energy system model and subjected to a full-factorial analysis of vari-
ations to its objective function. In other words, the weights 𝑤𝑤1 to 𝑤𝑤4 given in Equation (6) were 
set to “1” or “0” to produce the combinations given in Table 4. 

Table 4. Possible combination of objectives for a residential energy management system. 
Scenario w1 w2 w3 w4  Scenario w1 w2 w3 w4 

1 0 0 0 0  9 0 0 0 1 
2 1 0 0 0  10 1 0 0 1 
3 0 1 0 0  11 0 1 0 1 
4 1 1 0 0  12 1 1 0 1 
5 0 0 1 0  13 0 0 1 1 
6 1 0 1 0  14 1 0 1 1 
7 0 1 1 0  15 0 1 1 1 
8 1 1 1 0  16 1 1 1 1 
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From Table 4 there are 16 possible combinations (or scenarios) of objectives that the system 
characterised in this research can have. For example, in “Scenario 12” the system is operating to 
achieve electricity bill savings, emissions savings for the customer and retail profit for the elec-
tricity provider (whilst considering the discomfort and cost of the system). 

Each scenario was examined for each of the 36 subgroups created, to understand how the 
benefits and cost that these systems vary with sociodemographic, tariff structure and combination 
of objective functions. The steps taken to do this are given in Figure 4. 

 
Figure 4. Method for determining effects of sociodemographic, tariff structure and combination of objective functions. 

In accordance with Figure 4, the average monthly load profile created for each of the 36 
sociodemographic subgroups was used in a Monte Carlo simulation. For the first sociodemo-
graphic subgroup (i.e., “Lavish Lifestyles” customers under a flat-rate tariff), the average load 
profile was used to generate 10,000 monthly electricity use profiles generated using a Monte 
Carlo generator shown in Equation (8). 

[𝑑𝑑𝑡𝑡]𝑚𝑚 + (−1)𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟(𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟) × [𝜎𝜎𝑡𝑡]𝑚𝑚 × 𝑟𝑟𝑀𝑀𝑛𝑛𝑑𝑑 = [𝑑𝑑𝑡𝑡]𝑚𝑚 + 𝑁𝑁 (8) 

where [𝑑𝑑𝑡𝑡]𝑚𝑚, vector containing hourly energy consumption data for the average monthly load 
profile under examination; [𝜎𝜎𝑡𝑡]𝑚𝑚, vector containing hourly standard deviation of energy con-
sumption data for the average monthly load profile under examination; 𝑟𝑟𝑀𝑀𝑛𝑛𝑑𝑑, random number 
generator that generates numbers in the interval [0,1]; 𝑁𝑁  represented the noise associated with 
human activity within the home. 

The Monte Carlo generator shown in Equation (8) was designed to generate random values 
from a normal distribution, which reflected the data for households participating in the “Low 
Carbon London” project [1]. 

For each enumerate set of objective functions, or “scenarios”, (as shown in Table 4), the 
10,000 load profiles generated were fed into the residential energy management system model to 
find 10,000 values for the optimal benefit-cost ratio (𝑏𝑏𝑐𝑐) for the sociodemographic subgroup. Us-
ing the 10,000 results the average benefit-cost ratio for each subgroup was found. 

Furthermore, the mean, variance, and mean-variance ratio for the benefit-cost across all so-
ciodemographic groups and scenarios were found. The mean represents the average benefit-cost 
that a set of operating objectives would produce across all sociodemographic groups. The higher 
the mean the better the objectives are for the sociodemographic groups. The variance represents 
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the level of equity amongst the sociodemographic groups for a given set of operational objectives. 
The lower the variance, the more equitable the benefits and costs are across the different socio-
demographic subgroups. The mean-variance ratio represents the mean benefit for every dollar 
of inequity amongst the sociodemographic subgroups for a given set of residential energy man-
agement systems operating objectives. The higher the mean-variance the more suitable the given 
set of objective functions for the residential energy management system. 

On this basis, the cost-benefit values enumerated for each sociodemographic group across all 
scenarios were used to determine the operational objectives per customer group that would pro-
duce the highest cost-benefit value for each customer group whilst also yielding the lowest vari-
ance of cost-benefit values across these groups. This was done using the particle swarm optimi-
sation algorithm given in Table D2 in Appendix D. 

Finally, to illustrate how accurate the results are relative to research that has been done in the 
past, the range of values for the reduced average demand and peak-to-average demand found 
for all sociodemographic subgroups under flat-rate and Time-of-Use tariff structures were com-
pared to those obtained in past literature. 

3. Results  
Using the average load profiles of each of the 36 sociodemographic subgroups (Appendix B 

provides examples for 6 out of the 36 sociodemographic subgroups) and the combinations of 
objective functions for the systems (scenarios), shown in Table 4, allowed the cost and benefit of 
the system for each sociodemographic group to be determined. Appendix E gives comparisons 
of the original load profile for 6 out of the 36 customer groups examined with the optimal load 
profiles produced by the generalised model.  

The results are shown in Tables 5 and 6, where each column represents the benefit-cost ratio 
for all subgroups if the residential energy management system operated with only one set of op-
erational objectives; that is, if a one-size-fits-all approach is used. As an example, column 9 (Sce-
nario 8) from Table 6 represented the benefit-cost ratio for the 18 sociodemographic subgroups 
paying a Time-of-Use tariff, if the residential energy management systems operated to increase 
customer bill savings, emissions savings and tax savings. In Tables 5 and 6, in each scenario (or 
each column), the variance for the benefit-cost ratio for each set of operational objectives for the 
system is shown. Remembering that the greater the variance the more inequitable the cost and 
benefits, there is no set of objectives that produces a variance of zero (excluding the trivial sce-
nario shown in column 1). This result is significant, as it shows that when one set of objectives is 
used for multiple sociodemographic subgroups the result is an inequitable distribution of benefits 
across the subgroups. Reflecting on this point, in Table 5 for example, the greatest variance is 
found for “Scenario 2” and “Scenario 3”. This means that there are some operational objectives 
that deliver a worse overall outcome and a more inequitable distribution of cost and benefits for 
customers. 

This becomes even more clear when the individual rows of Tables 5 and 6 are considered. 
These show that there are some operational objectives that are more suitable (producing a higher 
cost-benefit value) for some sociodemographic subgroups than others. For example, it was clear 
that in Table 5 for “Steady Neighbourhoods”, Scenario 7 produced the largest benefit for the 
group (this scenario is where the residential energy management system operates to achieve emis-
sions and tax savings). However, for “Career Climbers”, Scenario 8 (where the system is operated 
to achieve electricity bill, emissions, and tax savings) produces the largest benefit. Clearly, the 
sociodemographic profile should be considered with deciding the operational objectives used to 
operate residential energy management systems.
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Table 5. Benefit Cost metric for different sociodemographic groups under the Flat-rate tariff for different operational objectives. 

Sociodemographic Subgroup Scenario 
1 2 3 4 5 6 7 8 9 * 10 * 11 12 * 13 14 * 15 16 * 

Lavish Lifestyles 0.00 2.00 2.00 1.59 3.00 3.00 2.59 3.00 0.00 0.00 0.47 0.00 0.51 0.00 0.51 0.00 
City Sophisticates 0.00 1.53 1.49 1.43 2.49 2.35 2.42 2.67 0.00 0.00 0.30 0.00 0.33 0.00 0.33 0.00 
Mature Money 0.00 1.51 1.30 1.51 2.41 2.42 2.57 2.64 0.00 0.00 0.33 0.00 0.37 0.00 0.37 0.00 
Starting out 0.00 1.55 1.90 1.71 2.50 2.39 3.00 2.95 0.00 0.00 0.33 0.00 0.37 0.00 0.37 0.00 
Executive Wealth 0.00 1.49 1.50 1.30 2.35 2.24 2.30 2.49 0.00 0.00 0.25 0.00 0.28 0.00 0.28 0.00 
Not Private Households 0.00 1.43 1.29 1.56 2.45 2.42 2.26 2.58 0.00 0.00 0.08 0.00 0.09 0.00 0.09 0.00 
Steady Neighbourhoods 0.00 1.47 1.59 1.37 2.33 2.35 2.48 2.35 0.00 0.00 0.27 0.00 0.30 0.00 0.30 0.00 
Career Climbers 0.00 1.61 1.36 1.54 2.61 2.34 2.41 2.51 0.00 0.00 0.30 0.00 0.33 0.00 0.33 0.00 
Successful Suburbs 0.00 1.19 1.33 1.76 2.41 2.22 2.41 2.47 0.00 0.00 0.16 0.00 0.18 0.00 0.18 0.00 
Modest Means 0.00 1.16 1.39 1.66 2.46 2.24 2.68 2.50 0.00 0.00 0.32 0.00 0.35 0.00 0.35 0.00 
Student life 0.00 1.27 1.40 1.45 2.29 2.29 2.40 2.39 0.00 0.00 0.16 0.00 0.18 0.00 0.18 0.00 
Striving Families 0.00 1.14 1.51 1.65 2.20 2.28 2.57 2.38 0.00 0.00 0.17 0.00 0.19 0.00 0.19 0.00 
Comfortable Seniors 0.00 1.66 1.31 1.65 2.26 2.27 2.45 2.35 0.00 0.00 0.16 0.00 0.19 0.00 0.19 0.00 
Countryside Communities 0.00 1.26 1.22 1.35 2.46 2.31 2.50 2.33 0.00 0.00 0.06 0.00 0.08 0.00 0.08 0.00 
Poorer Pensioners 0.00 1.39 1.36 1.29 2.27 2.53 2.24 2.51 0.00 0.00 0.07 0.00 0.09 0.00 0.09 0.00 
Young Hardship 0.00 1.18 1.13 1.31 2.23 2.17 2.34 2.38 0.00 0.00 0.06 0.00 0.08 0.00 0.08 0.00 
Difficult Circumstances 0.00 1.45 1.16 1.41 2.37 2.19 2.17 2.34 0.00 0.00 0.05 0.00 0.07 0.00 0.07 0.00 
Struggling Estates 0.00 1.32 1.26 1.48 2.37 2.12 2.31 2.47 0.00 0.00 0.30 0.00 0.33 0.00 0.33 0.00 
Mean 0.00 1.42 1.42 1.50 2.42 2.34 2.45 2.52 0.00 0.00 0.21 0.00 0.24 0.00 0.24 0.00 
Variance 0.00 0.05 0.05 0.02 0.03 0.04 0.04 0.04 0.00 0.00 0.01 0.00 0.02 0.00 0.02 0.00 
Mean-Variance 0.00 30.54 27.28 68.72 74.13 63.05 66.08 66.26 0.00 0.00 14.33 0.00 14.44 0.00 14.44 0.00 

* The values in Scenarios 9, 10, 12, 14 and 16 are not zero. However, when rounded off to 2 decimal places they appear to be zero. 
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Table 6. Benefit Cost metric for different sociodemographic groups under the Time-of-Use tariff for different operational objectives 

Sociodemographic Subgroup Scenario 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Lavish Lifestyles 0.00 1.73 1.52 1.77 2.93 2.56 2.95 2.76 1.00 1.00 0.98 1.00 0.98 1.00 0.98 1.00 
City Sophisticates 0.00 1.48 1.94 1.81 2.60 2.49 2.56 2.74 0.95 0.95 1.00 0.95 1.00 0.95 1.00 0.95 
Mature Money 0.00 1.35 1.33 2.00 2.45 2.24 2.50 2.26 0.54 0.54 0.41 0.54 0.41 0.54 0.41 0.54 
Starting out 0.00 1.35 1.63 1.57 2.39 2.59 2.69 2.74 0.63 0.63 0.98 0.63 0.98 0.63 0.98 0.63 
Executive Wealth 0.00 1.30 1.19 1.18 2.37 2.27 2.49 2.33 0.49 0.49 0.39 0.49 0.39 0.49 0.39 0.49 
Not Private Households 0.00 1.39 1.44 1.55 2.28 2.33 2.47 2.29 0.39 0.39 0.25 0.39 0.25 0.39 0.25 0.39 
Steady Neighbourhoods 0.00 1.34 1.53 1.36 2.24 2.38 2.51 2.51 0.45 0.45 0.16 0.45 0.16 0.45 0.16 0.45 
Career Climbers 0.00 1.34 1.63 1.61 2.40 2.32 2.71 2.35 0.56 0.56 0.63 0.56 0.63 0.56 0.63 0.56 
Successful Suburbs 0.00 1.25 1.33 1.34 2.27 2.40 2.51 2.39 0.46 0.46 0.30 0.46 0.30 0.46 0.30 0.46 
Modest Means 0.00 1.53 1.20 1.17 2.47 2.29 2.34 2.33 0.55 0.55 0.67 0.55 0.66 0.55 0.66 0.55 
Student life 0.00 1.71 1.77 1.84 2.36 2.27 2.45 2.30 0.44 0.44 0.45 0.44 0.45 0.44 0.45 0.44 
Striving Families 0.00 1.25 1.27 1.27 2.29 2.24 2.61 2.35 0.54 0.54 0.30 0.54 0.30 0.54 0.30 0.54 
Comfortable Seniors 0.00 1.52 1.35 1.27 2.59 2.22 2.56 2.37 0.70 0.70 0.81 0.70 0.80 0.70 0.80 0.70 
Countryside Communities 0.00 1.44 1.39 1.52 2.29 2.10 2.53 2.36 0.42 0.42 0.29 0.42 0.29 0.42 0.29 0.42 
Poorer Pensioners 0.00 1.68 1.13 1.36 2.31 2.26 2.28 2.51 0.32 0.32 0.15 0.32 0.15 0.32 0.15 0.32 
Young Hardship 0.00 1.00 1.00 1.00 2.00 2.00 2.00 2.00 0.22 0.22 0.00 0.22 0.00 0.22 0.00 0.22 
Difficult Circumstances 0.00 1.06 1.15 1.04 2.27 2.17 2.20 2.24 0.29 0.29 0.27 0.29 0.27 0.29 0.27 0.29 
Struggling Estates 0.00 1.38 1.43 1.46 2.53 2.39 2.43 2.71 0.57 0.57 0.61 0.57 0.61 0.57 0.61 0.57 
Mean 0.00 1.39 1.40 1.45 2.39 2.31 2.49 2.42 0.53 0.53 0.48 0.53 0.48 0.53 0.48 0.53 
Variance 0.00 0.04 0.06 0.08 0.04 0.02 0.04 0.04 0.04 0.04 0.09 0.04 0.09 0.04 0.09 0.04 
Mean-Variance 0.00 35.56 24.41 18.10 62.68 105.41 58.40 56.83 12.94 12.94 5.10 12.94 5.11 12.94 5.11 12.94 
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Moreover, the last row of Tables 5 and 6 gives the mean-variance of each objective. The 
mean-variance simply indicates the average benefit-cost for every dollar of inequity produced 
between the groups. The higher this value the better suited the combination of objectives are for 
all sociodemographic subgroups. For example, “Scenario 5” has the highest mean benefit-cost 
for all the groups on a flat-rate (74.13) tariff regime, whilst Scenario 6 had the highest mean-
variance for the sociodemographic groups under the Time-of-Use (105.41) tariff regime. This 
means that the electricity provider needs to be careful not to adopt a one-size-fits-all approach to 
the large-scale deployment of residential energy management systems. If care is not taken in 
deciding the operational objectives for the system, the provider may not necessarily maximise the 
social benefits for all customers. 

Moreover, when comparing the overall mean-variance (i.e., the sum of the mean-variance val-
ues) for Tables 5 and 6, the overall mean-variance is higher for a flat-rate tariff (175.07) and for a 
Time-of-Use tariff (103.02). This indicates that, in general, the tariff regime also needs to be given 
serious consideration when deciding on the design of residential energy management systems. 

Having seen that both sociodemographic profile and tariff structure affect the incentives for 
residential energy management systems, the best set of objective functions was determined (using 
the algorithm shown in Table D2 in Appendix D). The results of this analysis are shown in 
Tables 7 and 8. 

Table 7. Best combination of operational objectives that would yield most equitable distribution of benefits and cost 
for subgroups under a Flat-rate tariff. 

Sociodemographic Subgroup Scenario Optimal Benefit-Cost 
Lavish Lifestyles 8 2.59 
City Sophisticates 8 2.42 
Mature Money 7 2.42 
Starting out 6 2.50 
Executive Wealth 9 2.49 
Not Private Households 6 2.45 
Steady Neighbourhoods 8 2.48 
Career Climbers 8 2.41 
Successful Suburbs 9 2.47 
Modest Means 6 2.46 
Student life 8 2.40 
Striving Families 9 2.38 
Comfortable Seniors 8 2.45 
Countryside Communities 6 2.46 
Poorer Pensioners 9 2.51 
Young Hardship 9 2.38 
Difficult Circumstances 6 2.37 
Struggling Estates 9 2.47 
Mean  2.45 
Variance  0.00 
Mean-Variance  756.45 

Table 8. Best combination of operational objectives that would yield most equitable distribution of benefits and cost 
for subgroups under a Time-of-Use tariff. 

Sociodemographic Subgroup Scenario Optimal Cost Benefit 
Lavish Lifestyles 7 2.56 
City Sophisticates 7 2.49 
Mature Money 6 2.45 
Starting out 6 2.39 
Executive Wealth 6 2.37 
Not Private Households 7 2.33 
Steady Neighbourhoods 7 2.38 
Career Climbers 9 2.35 
Successful Suburbs 9 2.39 
Modest Means 8 2.34 
Student life 6 2.36 
Striving Families 9 2.35 
Comfortable Seniors 9 2.37 
Countryside Communities 9 2.36 
Poorer Pensioners 6 2.31 
Young Hardship 7 2.00 
Difficult Circumstances 6 2.27 
Struggling Estates 7 2.39 
Mean  2.36 
Variance  0.01 
Mean-Variance  193.43 
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Tables 7 and 8 suggest that the highest average overall cost-benefit ratio with the lowest 
variance can be obtained. It is clear from Table 7 that the mean-variance obtained (756.45) was 
higher than the highest mean-variance (74.13) in Table 5. Therefore, finding the best set of op-
erational objectives across the different groups produces a better result that using a one-size-fits-
all approach for sociodemographic subgroups under a flat-rate tariff. Likewise, it was clear from 
Table 8 that the mean-variance obtained (193.43) was higher than the highest mean-variance 
(105.41) in Table 6. This provides a second significant insight; that the optimal set of objectives 
for a given customer under a specific tariff structure can be found to produce a more equitable 
distribution of benefits for the customers. It can be inferred from the results in Tables 7 and 8, 
that in deploying residential energy management systems, the retailer needs to focus on creating 
customer packages that help the customer obtain the best combination of price, and technology 
options to meet individual needs, increase customer engagement, and lead to a more equitable 
distribution of benefits during the technology deployment process. 

Thus far, this work implies that the retailer does not necessarily need appliance-level electric-
ity consumption data to model and analyse the possible effects (at least from the customer’s per-
spective) of the large-scale deployment of residential energy management systems. To illustrate 
the validity of this, the results were compared to the range of values for the reduced average 
demand and peak-to-average demand found in past literature, as shown in Table 9. 

Table 9. Comparing average and peak-to-average values from this work and past literature. 
Tariff Type Load Profile Change Range of Values Found in This Work Range of Values Found in Literature 

Flat-Rate Reduced average demand (𝑘𝑘1) 10% to 65% 14.7% to 65.5% [59] 
Reduced average-to-peak demand (𝑘𝑘2) 1% to 82% 25% to 61% [59] 

Time-of-Use Reduced average demand (𝑘𝑘1) 10% to 35% 7% to 50.1% [16] 
Reduced average-to-peak demand (𝑘𝑘2) 25% to 53% 46% to 75% [60] 

The results show that the range of values in this work is comparable to those found previously. 
This lends support to using load profile data to model residential energy management systems 
performance, though it is acknowledged that it cannot indicate how appliances are to be sched-
uled in the home to achieve a reduced electricity demand. 

The results also demonstrated that the advantage of using the current generalised model of a 
residential energy management system is that it enables large-scale analysis to be done quickly 
with reasonability and reliable results. With traditional methods of assessing the cost-benefit of 
residential energy management systems appliance data is usually necessary. 

4. Discussion 
To simplify the complexity of the model, limit the scope of the research and focus on the key 

issues of the paper, several assumptions were made in the initial design of the residential energy 
management system generalised model. These assumptions lead to limitations of the model that 
do provide avenues for further research. 

Firstly, it was assumed that the customer strictly adheres to the optimal demand profile pro-
duced by the model; that is, changes made to the scheduling and use of appliances within the 
household by the system were followed by the customer. Whilst this assumption may not consist-
ently hold, it allowed the modelling process to be simplified and is in keeping with the fact that 
the customer participating in a demand response program (Low Carbon Project), would have 
made every effort to reduce their electricity use. Relaxing this assumption would involve simu-
lating control systems that can be used to augment the model. It is recommended that such sim-
ulation be done to further determine methods the model can be realistically enhanced. 

Secondly, it was assumed that once the residential energy management system is installed it 
begins to work immediately and continuously to reduce household electricity demand. Generally, 
it is important to make distinctions between single period, multiperiod and continuous demand 
response events as the techniques used to model these events are different [61] and would require 
extra modelling considerations that are beyond the scope of this paper. However, further re-
search can focus on how the model can be used to assess the behaviour of different load types. 

Thirdly, it was also assumed that costs such as installation cost, maintenance cost and consul-
tation fees were not considered when examining system cost. Calculating these costs generally 
depends on specific retail and market conditions and, as such, was not included in the model. 
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This ensured that the model was as general as possible. Nevertheless, future research can be done 
to consider how the model can be modified to consider retail and market conditions. 

Finally, it was assumed that the electricity retailer is also the aggregator responsible for ag-
gregating the demand response of all households with the installed systems. Compensation (and 
penalties) paid by the aggregator for customers providing (or not providing) demand response 
was not considered in this research. However, this does leave room for such considerations in 
further research. 

5. Conclusion 
Large-scale adoption of residential energy management systems can potentially play a crucial 

role in enhancing the demand response of domestic customers. However, the diversity of cus-
tomers, diversity of retail tariffs and general modelling approach used for these systems makes it 
difficult to model how their benefits and cost change across different customers. 

A validated generalised model for residential energy management systems was developed us-
ing a time series equation called an “Autoregressive Integrated Moving Average” equation. The 
generalised model uses the load profile of a household to forecast the optimal demand response 
and monetary benefits that the system provides for the customer using a cost-benefit metric (𝑏𝑏𝑐𝑐). 
Additionally, this work showed that the cost-benefit provided by these systems is influenced by 
the optimal combination of the customers’ sociodemographic profile, tariff type and the opera-
tional objectives upon which the system functions. Finally, the generalised model was used to 
determine the optimal set of objective functions that should be used for different customer groups 
that would maximise the collective social benefit of these systems for all customers. 

Even with these contributions recommendations for future research have also been made. 
These include relaxing the assumptions made in developing the model and enhancing the model 
with control systems algorithms. 
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Appendix A. Sociodemographic subgroups from the “Low Carbon London” project. 
Table A1. Showing description of Sociodemographic subgroups from the “Low Carbon London” Project [62]. 

Meta-Groups Type Description 

Affluent 

A. Lavish Lifestyles 
These are the most affluent people in the UK such as premiership footballers, hedge fund managers, 
entrepreneurs, people in high-status senior managerial and professional positions and very well-
educated individuals. 

B. Executive Wealth Wealthy families living in larger detached or semi-detached properties either in the suburbs, the 
edge of towns or in semi-rural locations. 

C. Mature Money These people tend to be older empty nesters and retired couples. Many live-in rural towns and 
villages, others live in the suburbs of larger towns. 

D. City Sophisticates Affluent younger professionals, metropolitan professionals, and socialising young renters who gen-
erally own flats in major towns and cities. 

E. Career Climbers 
Younger people, singles, couples, and families with young children. They live in flats, apartments, 
and smaller houses, which they are sometimes renting and often buying with a mortgage, occasion-
ally using a shared equity scheme. 

Comfortable 

F. Countryside Communities 
Areas of the lowest population densities in the country, ranging from remote farming areas to 
smaller villages and housing on the outskirts of smaller towns. Housing is typically owner occupied, 
detached or semi-detached with some renting. 

G. Successful Suburbs 
Comprises home-owning families living comfortably in stable areas in suburban and semi-rural lo-
cations. They mainly live in three or four bedrooms detached and semi-detached homes of an av-
erage value for the locality. 

H. Steady Neighbourhoods Home-owning families, often middle-aged, are living comfortably in suburban and urban locations. 
I. Comfortable Seniors established communities are generally made up of retired and older empty nester couples. 

J. Starting out Couples in their first home, starting a family, and others who are at an early stage of their career. 
Some are still renting but most will be buying their home with a mortgage. 

K. Student life  Areas dominated by students and young people, often recent graduates. 

L. Modest Means  
People own or rent smaller older terraced housing and flats, which often includes some of the least 
expensive housing in the area. The mix of families is likely to include singles, couples with children 
and single parents with a younger than average age profile. 

Adversity 

M. Striving Families low-income families typically live on traditional low-rise estates. 

N. Poorer Pensioners Pensioners and older people the majority of which are renting social housing but there are a few 
who own their home or rent privately. 

O. Young Hardship Younger people who own or rent cheap small, terraced houses or flats. 
P. Struggling Estates Low-income families living on traditional urban estates. 

Q. Difficult Circumstances These are streets with a higher proportion of younger people. Although all age groups may be rep-
resented those aged under 35 and with young children are more prevalent. 

 U. Not Private Households 
These people may be in communal establishments yet still consumers to some degree. This includes 
defence establishments, hotels, hostels, children’s homes, refuges, and local authority accommoda-
tion for travellers. 
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Appendix B. Examples of the average monthly load profiles of a typical household for 6 out of the 36 sociodemographic subgroups examined. 

  
Figure B1. Average monthly Load profile for “Lavish Lifestyle” customers under a Flat-rate tariff. Figure B2. Average monthly Load profile for “Lavish Lifestyle” customers under a Time-of-Use tariff. 

  
Figure B3. Average monthly Load profile for “Countryside Communities” customers under a Flat-rate 
tariff. 

Figure B4. Average monthly Load profile for “Countryside Communities” customers under a Time-
of-Use tariff. 

  

https://www.hos.pub/


Highlights Sustain. 153  
 

https://www.hos.pub 
 

  
Figure B5. Average monthly Load profile for “Difficult Circumstances” customers under a Flat-rate 
tariff. 

Figure B6. Average monthly Load profile for “Difficult Circumstances” customers under a Time-of-
Use tariff. 
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Appendix C. Load modifying Algorithm. 

This algorithm specifies how the system modifies the load profile of the household (represented by the autoregressive inte-
grated moving average model) to fulfil the objectives of the system while operating within constraints. 

According to the references given in Table 3, to maximise the functions 𝐽𝐽1, 𝐽𝐽2, 𝐽𝐽3, 𝐽𝐽5 and 𝐽𝐽6 load reduction must be used. 
However, to maximise function 𝐽𝐽4 (retail profit), load shifting must be used. Therefore, the load modifying algorithm was con-
structed to perform both load shifting and load reduction to modify the customer’s load profile. The final output of the model 
consisted of the optimal reduced monthly load profile of the household, the values of the percentage reduction (𝑘𝑘1) in average 
electricity use, the percentage reduction (𝑘𝑘2) in hourly peak-to-average electricity use and the final benefit-cost ratio 𝑏𝑏𝑐𝑐 gained 
from the system. A flow chart of the algorithm is given in Figure C1. 

 
Figure C1. Flow chart of load modifying algorithm. 

According to the flow chart in Figure B6, the inputs to the load modifying algorithm are the original load profile of the 
customer and the weights for the objectives of the residential energy management system. The algorithm then checks whether 
the retail profit is one of the objectives to be considered (that is, if the weight 𝑤𝑤4 = 1) when determining the optimal forecast 
demand response produced by the system. If increasing retail profit is to be considered, then the load shifting component of the 
algorithm is used to modify the load profile. The load shifting algorithm is given in Table C1. 

Table C1. Load shifting algorithm to modify load profile. 

Algorithm Input: load profile of household D, retail tariff 𝑟𝑟𝑡𝑡 and spot price 𝑠𝑠𝑡𝑡 
1 Get the customer forecasted load profile. 
2 Let “𝑀𝑀” and “𝑏𝑏” are two hours in the forecasted load profile. Initially “𝑀𝑀” and “𝑏𝑏” are set to the first hour in the forecasted load profile. 

3 If the electricity uses during hour 𝑀𝑀 is greater than the electricity uses during hour 𝑏𝑏 for the forecasted load profile and the amount of profit per kilo-
watt hour during hour “𝑏𝑏” is greater than the profit per kilowatt hour during hour “𝑀𝑀” execute line 4 and line 5. 

4 New demand for hour “𝑀𝑀” = average electricity use for hour “𝑀𝑀” and hour “𝑏𝑏”. 
5 New demand for hour “𝑏𝑏” = average electricity use for hour “𝑀𝑀” and hour “𝑏𝑏”. 
6 If the conditions in line 3 are not true execute line 7 and line 8. 
7 New demand for hour “𝑀𝑀” = original electricity use for hour “𝑀𝑀”. 
8 New demand for hour “𝑏𝑏” = original electricity use for hour “𝑏𝑏”. 
9 Repeat line 2 to 8 for every hour “𝑏𝑏” in the forecasted load profile. 

10 Repeat line 2 to 9 for every hour “𝑀𝑀” in the forecasted load profile. 
11 𝑘𝑘1 = the average of the new forecasted demand profile divided by the average of the original forecasted demand profile. 
12 𝑘𝑘2 = the standard deviation of the new forecasted demand profile divided by the standard deviation of the original forecasted demand profile. 
Algorithm Output: optimal values for 𝑘𝑘1, 𝑘𝑘2 

According to Table C1, every hour in the load profile is compared to every other hour. If two periods are found such that 
the conditions given in line 5 of Table C1 are true, then the average of the demand is found for the two periods. Finding this 
average is equivalent to shifting demand from one period to the next so that both periods have the same demand. Although 
simple, this algorithm does produce an optimal load profile with a reduced peak-to-average demand. Thus, the customer reduces 
their electricity bill whilst the retailer increases its profit. 
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One the other hand, if the retail profit is not one of the objectives to be considered (that is, if the weight 𝑤𝑤4 = 0) then, 
according to the flow chart given in Figure B6, a load reducing component of the algorithm is used. The load reducing compo-
nent is based on particle swarm optimisation (PSO) procedure and is shown in Table C2. 

Table C2. Load modifying algorithm based on particle swarm optimisation. 
Algorithm Input: Average Load profile of household 
1 Initialise number of iterations (number of attempts to get a solution) to 150. 
2 Initialise number of particles (number of possible solutions to consider in each attempt) to 50. 

3 For each particle the position (possible solution to 𝑘𝑘1and 𝑘𝑘2) and velocity (rate at which the solution will change) is randomly ini-
tialised. 

4 Measure the fitness (𝑏𝑏𝑐𝑐) for each particle. The fitness function simply calculates the value of (𝑏𝑏𝑐𝑐) based on inputs: demand profile of 
household, 𝑘𝑘1 and 𝑘𝑘2. 

5 Store each particle best fitness (𝑏𝑏𝑐𝑐) in “pbest” and store the particle with the overall best fitness in “gbest”. 
6 For each particle update the position and velocity vectors according the update equation found at [58]. 
7 Repeat steps 3 to 6 until maximum number of iterations is reached. 
Algorithm Output: optimal reduced load profile of household, optimal values for 𝑘𝑘1, 𝑘𝑘2 and 𝑏𝑏𝑐𝑐. 

The algorithm uses a fitness function that calculates 𝑏𝑏𝑐𝑐 using Equation (6). The fitness function is shown in Table C3. Particle 
swarm optimisation was chosen as the basis for the algorithm because it is excellent at avoiding suboptimal solutions, is simple to 
implement, does not add to the complexity of the problem being solved and is efficient in finding optimal (or near optimal) 
solutions [58]. 

Table C3. Fitness function for the particle swarm algorithm shown in [58]. 

Algorithm Input: scenario number, 𝑤𝑤1, 𝑤𝑤2, 𝑤𝑤3 and 𝑤𝑤4 load profile data for household and 𝑘𝑘1, 𝑘𝑘2 
1 Use the load profile data to create an autoregressive integrated moving average model using Equation (2) 
2 Use the model to forecast 720 hours (1 month) of future electricity use. 
3 Use the load profile data and 𝑘𝑘1, 𝑘𝑘2 values to create an autoregressive integrated moving average model using Equation (4) 
4 Use the new model to forecast 720 hours (1 month) of future electricity use. 
5 Use the result from lines 4 and 5, Equation (6) and  𝑤𝑤1, 𝑤𝑤2, 𝑤𝑤3 and 𝑤𝑤4 to calculate the 𝑏𝑏𝑐𝑐 value for the customer. 
Algorithm Output: customer cost-benefit ratio 𝑏𝑏𝑐𝑐. 

The final output of the model consisted of the optimal forecasted reduced monthly load profile of the household, the values 
of the forecasted percentage reduction (𝑘𝑘1) in average electricity use, the forecasted percentage reduction in hourly peak-to-
average electricity use (𝑘𝑘2) and the forecasted cost-benefit ratio (𝑏𝑏𝑐𝑐) gained from these systems. 
  

https://www.hos.pub/


Highlights Sustain. 156  
 

https://www.hos.pub 
 

Appendix D. Other Research Algorithms. 
Table D1. Algorithm for generating optimal benefit cost for each sociodemographic subgroup under each tariff for the possible cases outlined in Table 1. 
Algorithm Input: Load profile data for all households 
1 Find the representative average monthly load profile for the first household subgroup. 
2 Use the Monte Carlo generator (shown in Equation (8)) to generate 10,000 load profiles from the representative average monthly load profile. 

3 Use the algorithm given in Table 9 to find the optimal reduced load profile of household, optimal values for 𝑘𝑘1, 𝑘𝑘2, and 𝑏𝑏𝑐𝑐 for each of the 10,000 load 
profiles. 

4 Find the average 𝑘𝑘1, 𝑘𝑘2, and 𝑏𝑏𝑐𝑐  values from the 10,000 results and store the final averages. 
5 Repeat steps 1 to 4 for the other 15 scenarios presented in Table 2. 
6 Repeat steps 1 to 5 for the other 35 sociodemographic subgroups. 
Algorithm Output: 576 average values of 𝑘𝑘1, 𝑘𝑘2, and 𝑏𝑏𝑐𝑐  (one for each scenario and sociodemographic subgroup combination) 

Table D2. Algorithm for determining the optimal objectives for each subgroup. 

Algorithm Input: 576 average values of 𝑘𝑘1, 𝑘𝑘2 and 𝑏𝑏𝑐𝑐 (one for each scenario and sociodemographic subgroup combination) 
1 Initialise number of iterations (number of attempts to get a solution) to 150. 
2 Initialise number of particles (number of possible solutions to consider in each attempt) to 50. 

3 
For each particle the position (18 scenario numbers (see Tables 3 and 4), one for each sociodemographic group) and velocity (rate at which the solu-
tion will change) are randomly initialised. 18 scenario numbers are used to get the 𝑏𝑏𝑐𝑐 value for a particular scenario and sociodemographic subgroup 
pair. 

4 Measure the fitness (the mean-variance of the 𝑏𝑏𝑐𝑐 values obtained from the 18 scenario numbers) for each particle. 
5 Store each particle best fitness in “pbest” and store the particle with the overall best fitness in “gbest”. 
6 For each particle update the position and velocity vectors according the update equation found at [58]. 
7 Repeat steps 3 to 6 until maximum number of iterations is reached. 
Algorithm Output: best combination of objectives for each sociodemographic subgroup that yields the maximum mean-variance for the entire sample of households. 
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Appendix E. Examples of reduced average monthly load profiles for typical households of 6 out of the 36 sociodemographic subgroups examined. 

  
Figure E1. Comparison of normal and optimised average monthly load profile for “City Sophisticates” 
customers using a Flat-rate tariff under Scenario 2. 

Figure E2. Comparison of normal and optimised average monthly load profile for “City Sophisticates” 
customers using a Time-of-Use tariff under Scenario 2. 

  
Figure E3. Comparison of normal and optimised average monthly load profile for “Steady Neighbour-
hoods” customers using a Flat-rate tariff under Scenario 7. 

Figure E4. Comparison of normal and optimised average monthly load profile for “Steady Neighbour-
hoods” customers using a Time-of-Use tariff under Scenario 7. 
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Figure E5. Comparison of normal and optimised average monthly load profile for “Poorer Pensioners” 
customers using a Flat-rate tariff under Scenario 14. 

Figure E6. Comparison of normal and optimised average monthly load profile for “Poorer Pensioners” 
customers using a Time-of-Use tariff under Scenario 14. 
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